Synthesis and Characterization of Novel Mg(OH)₂/CdS Hetero Nanostructures for Sunlight-Induced Degradation of Phenolic Pollutant

Aishwarya Singh, Bhavani Prasad Nenavathu*

¹ Department of Applied Sciences and Humanities, Indira Gandhi Delhi Technical University for Women, Delhi, 110006, India

Received: 2021-06-15

Accepted: 2021-08-01

Published: 2021-09-01

ABSTRACT

Mg(OH)2/CdS hetero nanostructures have been successfully synthesized by a novel precipitation method and the synthesis involves three steps. The first step involves the synthesis of Mg(OH)₂ nanoparticles using the homogeneous precipitation method. Then, surface-modifying agent citric acid was used to functionalize Mg (OH)₂. Finally, the cadmium sulfide (CdS) shell was deposited on the surface-modified Mg (OH)₂ by the co-precipitation method. The Mg(OH)₂/CdS hetero nanostructures were characterized using X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS), and photoluminescence spectroscopy. DRS results indicated a blue shift of CdS bandgap absorption with respect to the bulk CdS. XPS results showed evidence for the binding energies of Mg(OH)₂, Cd, and S. The Mg (OH)₂/CdS hetero nanostructures were explored as a catalyst for sunlight-induced photocatalytic degradation of β - naphthol pollutant. The 0.2 mg/ mL batch of Mg (OH)₂/CdS hetero nanostructures maintained at pH 8.5 showed maximum photodegradation efficiency (75 ± 2.1 %). Higher photocatalytic degradation efficiency for Mg(OH)₂/CdS hetero nanostructures could be due to the incorporation of CdS and increased reactive oxygen species (ROS) generation. The reusability of the Mg (OH)₂/CdS hetero nanostructures was also tested, indicating stability for up to three cycles without any loss of efficiency.

Keywords: chemical precipitation method, Mg(OH)₂/CdS hetero nanostructures, nanoneedles, cauliflower-shaped, β- naphthol pollutant, Photocatalysis

How to cite this article

Singh A., Nenavathu B.P. Synthesis and Characterization of Novel Mg(OH)₂/CdS Hetero Nanostructures for Sunlight-Induced Degradation of Phenolic Pollutant . J. Water Environ. Nanotechnol., 2021; 6(4): ***_***. DOI: 10.22090/jwent.2021.04.001

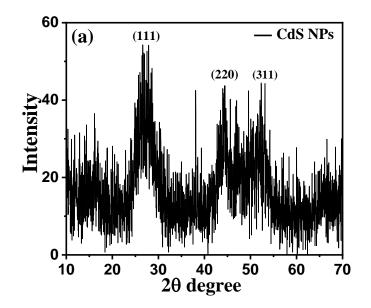


Figure S1. (a) XRD patterns of CdS

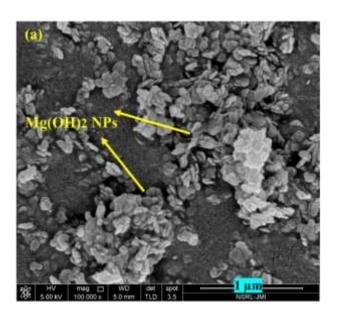


Figure S2. (a) Showing Scanning electron microscopy of $Mg(OH)_2$ NPs

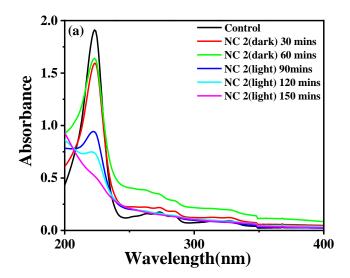
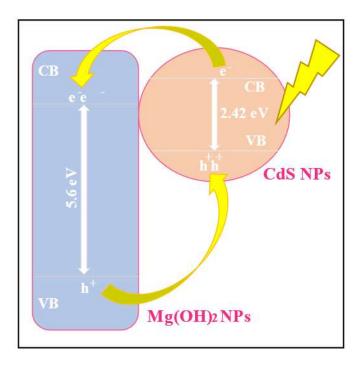



Figure S3. (a) Showing UV-vis spectroscopy results of β -naphthol degradation in natural sunlight

Scheme 1. showing the possible mechanism for the photodegradation of β -naphthol

Table S1. The VB and CB band positions of Mg (OH) $_2$ /CdS heteronanostructures and bare Mg (OH) $_2$ and CdS

Sample Name	Band gap (E _g , eV)	Evв	Есв
		(eV)	(eV)
Bare Mg (OH) ₂	5.50	1.00	-4.4
Mg (OH) ₂ /CdS	2.45	-0.56	-3.01
CdS	2.95	-0.937	2.013

Table.S2. showing the degradation of $\beta\text{-naphthol}$ using various photocatalysts

S.no.	Photocatalyst	Source	Degradation efficiency	Time	Ref.
1	Praseodymium oxide	400 W Mercury lamp	100%	12 min	[23]
2	Cadmium molybdate	400 W Xe Lamp	90%	6 h	[24]
3	N-TiO ₂ /SiO ₂	25W Natural light lamp PT 2191-ExoTerra	95%	3 h	[25]
4	TiO ₂ /Activated Carbon	20 W UV-C light	100%	1.5h	[26]