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ABSTRACT
In the current work, a novel ZnO-Cu2O heterojunction was synthesized from ZnO nanorods and Cu2O 
nanoparticles via a hydrothermal route and was applied for the first time as a visible light-active 
photocatalyst for the Paraoxon insecticide decomposition. Crystallinity, shape, and size of the particles 
and optical properties of the synthesized heterojunction nanocomposites were evaluated by XRD, 
FESEM, EDS, Mott-Schottky, photocurrent analysis, and UV-Visible spectroscopy analyses. Based on 
the obtained results, the ZnO-Cu2O heterojunction nanocomposite was successfully synthesized and 
compared to pure ZnO semiconductor has enhanced photocatalytic efficiency. The nanocomposite with 
a 40% weight percentage of Cu2O has the best photocatalytic activity of 0.0201 min-1, which could be 
related to the improvement of optical properties (the increase in the visible light harvesting ability) 
and the recombination reduction of the photoinduced electron-hole pairs. In addition, according to the 
radical trapping tests and Mott-Schottky experiments, superoxide radical was determined as the main 
oxidizing species for the photocatalytic degradation of Paraoxon, and a type II charge transfer process 
was proposed for the improved photocatalytic activity.
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INTRODUCTION 
Paraoxon is one of the most important 

commercial organophosphate insecticides due 
to its high insecticidal efficiency, wide range of 
applications, and sufficient solubility in water. 
Nevertheless, due to its wide use in agriculture, 
it is commonly recognized as an environmental 
pollutant in surface water, soil, and groundwater 
[1]. In this regard, advanced technologies including 
microbial degradation, the use of nanomembrane, 
and photocatalytic decomposition have been 
developed for the removal of insecticides from 
contaminated environments [2-4]. Among 
the mentioned technologies, photocatalytic 
decomposition of the insecticides has some merits 
including [5, 6].   

ZnO is a widely used semiconductor 
photocatalyst, which has a wide application in the 
photocatalytic degradation of different pollutants. 
The major advantages of ZnO are its good chemical 
stability, non-toxicity, low production cost, and high 
eco-friendly [7, 8]. However, it has a high energy 
band-gap value, and low visible light photocatalytic 
activity, furthermore, the fast recombination of 
photogenerated electrons and holes remarkably 
reduces its photocatalytic performance [9]. 
Therefore, to solve these problems and to improve 
the visible light photocatalytic efficiency of  ZnO, 
different techniques have been developed in recent 
years such as doping [10], surface modification [11], 
morphology manipulation [12], defect engineering 
[13], and formation of hybrids and heterojunctions 
[9]. Among the above strategies, coupling of ZnO 
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with other semiconductors in the heterojunction 
composite form has gained considerable interest, 
due to the potential capability of this method to 
enhance the photocatalytic activity via extending 
the visible-light harvesting and suppression of the 
recombination of the photogenerated electron–
hole pairs. In this regard, various heterojunction 
photocatalysts of ZnO have been prepared such 
as ZnO/ZnBi2O4 [14], ZnO/CuO [15], ZnO/
MoS2[16], ZnO/g-C3N4 [17], ZnO/Bi2MoO6 [18], 
and Ag2O/ZnO [19].

During the past decades, the p-type Copper (I) 
oxide (Cu2O) semiconductor has gained remarkable 
consideration as a promising photocatalyst for 
the photocatalytic decomposition of various 
pollutants [20]. Nevertheless, it has a narrow band 
gap, and because of the fast recombination of the 
photoinduced electron–hole pairs on its surface, 
Cu2O has low photocatalytic efficiency. In order to 
overcome this restriction, various techniques have 
been studied for the reduction of the charge carriers 
recombination on this semiconductor, one of the 
most promising strategies is the compositing of 
Cu2O with other semiconductors in heterojunction 
form, such as TiO2/Cu2O [21], Ag2O/Cu2O [22], 
Cu2O/Bi2S3 [23], Fe2O3/Cu2O [24], Cu2O/Cu2V2O7 
[25], and SrTiO3/Cu2O [26]. 

In the current study, ZnO-Cu2O heterojunction 
photocatalyst was produced by an innovative 
hydrothermal method from ZnO nanorods, and 
Cu2O nanoparticles and was applied as a visible 
light active photocatalyst for the degradation of 
Paraoxon insecticide. Based on the literature review, 
there is no report on the construction of ZnO-Cu2O 
heterojunctions with nanorods and nanoparticles 
morphologies; in addition, there is no published 
article about the usage of ZnO-Cu2O photocatalyst 
for the degradation of Paraoxon insecticide. The 
prepared photocatalysts were characterized by 
XRD, EDS, FESEM, Mott-Schottky, photocurrent, 
and DRS analysis. 

EXPERIMENTAL
Materials

Zn (NO3)2.6H2O, Ethylene glycol, Na2CO3, 
ammonia solution (25%), ethanol, Copper(II) 
nitrate trihydrate, Glycine, Potassium hydroxide 
were purchased in analytical grade from Merck, 
Germany, and were used as raw materials without 
any purification. 

Synthesis of ZnO nanorods
To prepare ZnO nanorods, 1.5 g of zinc nitrate 

hexahydrate and 3 ml of were dissolved in 50 ml 
then 0.5 g of sodium carbonate was added and 
stirred for 2 hours. The resulting solution was 
transferred into a Teflon-lined stainless autoclave 
and subjected to a hydrothermal process at 
120 ℃ for 12 hours. The final precipitates were 
immediately separated by centrifugation, washed 
with water and ethanol, and dried at 80°C. In this 
method, sodium carbonate was used as a weak base 
for the shape-controlled conversion of zinc cations 
to ZnO nanorods which were converted to CO2 gas 
during the hydrothermal process. 

Synthesis of Cu2O nanoparticles
To synthesize Cu2O nanoparticles, 1.21 g of 

Copper (II) nitrate trihydrate was dissolved in 50 
ml deionized water, and in another beaker, 0.75 g of 
Glycine amino acid was dissolved in 50 ml deionized 
water. These two solutions were mixed and under 
ultrasonication, 0.56 g Potassium hydroxide was 
added to the mixed solution. Later on, the solution 
was poured into a Teflon-lined stainless autoclave 
and was subjected to the hydrothermal process for 
5 hours at a temperature of 200 ℃. The resulting 
nanoparticles were separated by centrifugation, 
washed with water and ethanol, and dried at 80°C. 

Synthesis of ZnO-Cu2O nanocomposite
In a typical procedure, for the preparation of 

ZnO-Cu2O heterojunction photocatalyst with 
10, 20, 30, 40, and 50% weight percentage of 
Cu2O nanoparticles, which are labeled as ZnO-
10Cu2O, ZnO-20Cu2O, ZnO-30Cu2O, ZnO-
40Cu2O, and ZnO-50Cu2O, desired amounts of 
the prepared ZnO nanorods was fully dispersed 
by probe ultrasonication in the final solution of 
Cu2O as described in the above section. At that 
point, the final suspension was poured into Teflon 
lined stainless autoclave and subjected to the 
hydrothermal process for 5 h at a temperature of 
200 ℃. After completing the process, the prepared 
samples were extracted by centrifuge, and after 
washing with deionized water and ethanol, dried 
at 80 ℃. 

Photocatalytic activity
The photocatalytic efficiencies of the synthesized 

samples were investigated by measuring the 
degradation of Paraoxon insecticide under visible 
light irradiation. A 570W Xenon lamp equipped 
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with an L41 UV-cut-off filter (Kenko Co.) was 
used as a visible light source. Briefly, 50 mg of 
photocatalyst sample was fully dispersed in 100 mL 
of the aqueous solution of Paraoxon with the initial 
concentration of 30 mg/L. The resulting suspension 
was maintained under dark conditions and 
stirred for 4 h to reach an adsorption–desorption 
equilibrium, and afterward was irradiated at the 
pH level of 7 and temperature of 25 ℃. Every 15 
min, 5 mL of aliquot was sampled and immediately 
centrifuged to deposit the remnant photocatalyst 
nanocomposites, and the remaining concentration 
of Paraoxon insecticide was measured via Cary 100 
Bio UV–Vis spectrophotometer.

RESULTS AND DISCUSSION
The crystal structure of the synthesized samples 

was characterized by X-ray diffraction (XRD) 
using a Philips X’Pert MPD X-ray diffractometer 
(Netherlands) with Cu Kα radiation (λ = 1.54056 
Å). In Fig. 1, for the ZnO nanorods, the major 
diffraction peaks positioned at 2θ = 31.9°,34.7°, 
36.5°, 47.9, 56.8°, 62.9°, 68.1°, and 69.3° can be 
respectively assigned to (100), (002), (101), (102), 
(110). (103), (112), and (201) lattice planes of the 

hexagonal phase of ZnO (JCPDS # 80-0074) [27]. 
In the graph of Cu2O nanoparticles, the peaks at 
2θ = 29.9°,37.8°, 42.9°, 61.9, 74.1°, and 78.1° can 
be assigned to the (110), (111), (200), (220), (311) 
and (222) planes respectively, corresponding to the 
cubic Cu2O structure (JCPDS 65-3288) [28]. In 
the XRD graph of the ZnO-Cu2O heterojunction 
sample, the diffraction lines of ZnO and Cu2O 
are seen, indicating the victorious synthesis of the 
heterojunction nanocomposite. Broadening of the 
XRD lines indicates the nanostructure nature of 
the prepared samples and the estimated crystallite 
sizes based on Debye-Scherrer’s formula [29] for 
the ZnO and Cu2O samples are about 18 nm and 20 
nm, respectively.

The FE-SEM experiment using Tescan MIRA 3 
FESEM (Czech Republic), was used to investigate 
the size and morphology of the prepared 
nanostructures. The FE-SEM images of the 
synthesized ZnO-40Cu2O heterojunction are seen 
in Figs. 2A and B. In this image, the ZnO nanorods 
with an approximate diameter of 50-70 nm can be 
observed, and Cu2O nanoparticles are also seen 
in this image. The difference between particle size 
approximated from Debye-Scherrer’s equation and 
that of the FE-SEM images is mainly related to the 

 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. XRD patterns of the prepared samples.
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limitations of Debye-Scherrer’s equation [30].
To confirm the presence of ZnO and Cu2O 

compounds in the ZnO-Cu2O nanocomposite, the 
EDS analysis was carried out on the ZnO-40Cu2O 
sample to identify the elemental composition and 
to authenticate the presence of Cu2O and ZnO in 
this sample. The peaks of Zn, O, and Cu elements 
are seen in the EDS spectrum of the ZnO-40Cu2O 
sample in Fig. 2C, indicating the victorious 
synthesis of the ZnO-Cu2O heterojunction. Based 
on the result of this analysis, the weight percentage 
of the Zn, O, and Cu elements in the ZnO-40Cu2O 
sample are about 54%, 20%, and 26%, respectively. 
Therefore, it could be concluded that the weight 

percentage of Cu2O in this sample is lower than 
that of the expected 40%, which may be related to 
the incomplete reaction of the Cu2O preparation 
method. 

The optical characteristics of the synthesized 
photocatalysts were studied by UV-Vis diffuse 
reflectance spectroscopy (UV-DRS) on Shimadzu 
UV-2550 UV–vis spectrophotometer (Japan). As 
shown in Fig. 3, the absorption edge of the ZnO 
nanorods is located at about 400 nm and the 
absorption edge of the Cu2O nanoparticles is about 
630 nm. Furthermore, compared with ZnO, the 
absorption edge of the ZnO-Cu2O nanocomposite 
has a redshift, therefore compositing of ZnO with 

 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 2. FE-SEM image (A and B) and EDS spectrum (C) of ZnO-40Cu2O nanocomposite.
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Cu2O could enhance the visible light harvesting 
capability of ZnO. The band gap energy (Eg) of 
the synthesized photocatalysts was estimated by 
the Kubelka–Munk function [24]. Based on Fig. 
3b, the Eg values of ZnO and Cu2O are about 3 
eV and 1.3 eV, respectively. Whereas the ZnO-
Cu2O heterojunction photocatalyst has two Eg 
values at 2.8 and 1.3 eV, resulting from ZnO 
and Cu2O semiconductors. Decreasing the Eg 
of ZnO confirms the considerable effect of the 
heterojunction compositing on the narrowing 
of the ZnO band gap [31], which could result in 
the enhancement of its visible light absorption 
capability and visible light photocatalytic efficiency. 

The photocurrent analysis could be applied 
for investigating the charge carriers’ separation 
on the synthesized samples. Any increase in the 
photocurrent density could be related to the 
suppression of charge carriers’ recombination, 
which could result in the improvement of the 

photocatalytic efficiency [32]. As seen in Fig. 4, 
the photocurrent density of the ZnO-40Cu2O 
heterojunction nanocomposite is remarkably 
higher than that of the bare ZnO sample. Therefore, 
this increase in the photocurrent density could 
be related to the reduction of the recombination 
of charge carriers. Therefore, because of the 
decreasing recombination rate of charge carriers on 
the ZnO-Cu2O nanocomposite, this sample could 
have improved photocatalytic activity.  

The potentials of the conduction band edge 
(EC) and the valance band edge (EV)  of the ZnO 
and Cu2O samples was estimated by the Mott-
Schottky experiment, as seen in Fig. 5. The positive 
slope of the Mott-Schottky plot of the ZnO 
photocatalyst demonstrates the n-type nature of 
this semiconductor. But, the negative slope of the 
Mott-Schottky plot of the Cu2O sample, indicates 
that is the p-type nature of Cu2O [33, 34]. As shown 
in Fig. 5a and Fig. 5b, the EFB of Cu2O and ZnO 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. (a) UV–vis absorption spectra and (b) the plots of (αhν)1/2 vs hν for obtaining the band gap energy (Eg) of the prepared sample.

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. PL spectra of the prepared samples.
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are around +0.1 V and -0.6 V (vs. Ag/AgCl) (+0.3 
V and -0.4 V vs. NHE), respectively. As previously 
reported, for an n-type semiconductor, the EFB 
value is 0.1 V lower than the EC, and for a p-type 
semiconductor, EFB is about ~0.1 eV higher than the 
EV [35]. Therefore, the EC of Cu2O and ZnO samples 
are about +0.4 and -0.5 eV vs. NHE, respectively. EV 
of Cu2O and ZnO samples are estimated by EV = EC 
+ Eg equation, hence, the EV of these samples are 
0.9 and 2.5 eV vs. NHE, respectively. 

The photocatalytic efficiencies of the 
produced samples were examined by evaluating 
the photocatalytic degradation of Paraoxon 
insecticide on the prepared photocatalysts under 
the irradiation of visible light. As seen in Fig. 6(A), 
without the addition of any photocatalyst (Blank) 
sample, Paraoxon is not degraded, indicating 
its stability under visible light. On the other 
hand, considerable decomposition is seen in the 
existence of ZnO and ZnO-Cu2O heterojunction 
nanocomposites, and about 100% of Paraoxon is 
decomposed after 180 min of irradiation, on ZnO-
40Cu2O heterojunction sample with 40% weight 

percentage of Cu2O nanoparticles which has the 
best performance. Because of the enhancement of 
the visible light harvesting capability and due to the 
reduction of the electron-hole pairs recombination 
on the ZnO-Cu2O samples, these samples have 
considerably enhanced photocatalytic activity. The 
kinetics of the photocatalytic degradation reactions 
of Paraoxon over the prepared photocatalysts were 
evaluated based on the Pseudo first-order equation 
(Eq. (1)) according to the Langmuir-Hinshelwood 
(L–H) model [36].

               (1)

Where  is apparent reaction constant, 

and  and  are the Paraoxon concentrations 
at illumination time (t) of 0 and t respectively. Fig. 
6(B) shows the obtained plots for the photocatalytic 
decomposition of Paraoxon over the synthesized 

photocatalysts.  of the ZnO, and ZnO-
40Cu2O samples are measured as 0.0021, and 0.0201 
min-1, respectively. Therefore, the existence of Cu2O 

 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Mott-Schottky measurements for (A) Cu2O and (B) ZnO samples.

Table.1. Comparison of the photocatalytic activity of the ZnO-Cu2O sample with reported results
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in the ZnO-Cu2O heterojunction considerably 
improves the visible light photocatalytic efficiency 
of ZnO. In table.1 the photocatalytic performance 
of the ZnO-40Cu2O heterojunction with previously 
reported works, as seen in this table this sample has 
improved photocatalytic performance.

To study the function of hydroxyl radical 
(OH•), superoxide radical (O2

•−), and hole, on 
the photocatalytic degradation of Paraoxon 
over the ZnO-Cu2O heterojunction, tert-Butyl 
alcohol (t-BUOH), benzoquinone (BQ), and 

Ethylenediaminetetraacetic acid (EDTA) were 
added into the reaction solution as scavengers of 
these species, respectively [42]. As seen in Fig. 7 the 
highest decrease in the photocatalytic performance 
is observed in presence of benzoquinone, 
indicating the main function of superoxide radicals 
for the photocatalytic decomposition of Paraoxon. 
Furthermore, the photocatalytic degradation is 
also decreased in presence of t-BUOH. Therefore, 
hydroxyl and superoxide radicals are the major 
oxidizing species responsible for the photocatalytic 

 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. (A) Visible light photocatalytic degradation of Paraoxon by using the synthesized samples, (B) kinetics of the photocatalytic 
degradation reactions of Paraoxon based on the Pseudo first-order equation. 

 

 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Activities of ZnO-Cu2O nanocomposite for the visible light photocat-
alytic decomposition of Paraoxon in the existence of various scavengers
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activity of ZnO-Cu2O nanocomposite under visible 
light illumination. 

Fig. 8 indicates a schematic view of the band 
energy diagram and type II charge transfer 
processes for the photocatalytic activity of the ZnO-
Cu2O heterojunction photocatalyst, under visible 
light illumination. With an incidence of visible light 
photons onto this photocatalyst, the electrons–
hole pairs are produced in these semiconductors. 
The photo-generated electron on the CB of Cu2O 
transfers to the CB of ZnO, and simultaneously, 
the hole on the VB of ZnO transfers to the VB 
of Cu2O [43]. Therefore, the recombination of 
electron–hole pairs is considerably suppressed, and 
the life span of photoinduced holes and electrons 
is greatly increased. As a result, more O2

•− and OH 

radicals are generated, and the oxidation power of 
the photoinduced electrons and holes is improved, 
resulting in the enhancement of the photocatalytic 
performance. According to the acquired results, 
the following degradation mechanism could be 
proposed for the degradation of Paraoxon over the 
ZnO-Cu2O heterojunction nanocomposite:

Paraoxon (aq) + OH• (aq) + O2
•− (aq)  

 CO2 (g)+ H2O (l) + 
NO3

− (aq) + PO4
3− (aq) (2)

CONCLUSION
In the current study, a novel heterojunction 

nanocomposite was prepared via a hydrothermal 
route from ZnO nanorods and Cu2O nanoparticles 
and was applied for the visible light photocatalytic 
degradation of Paraoxon insecticide. As the 
results indicated, the best photocatalytic efficiency 
was obtained for the ZnO-Cu2O heterojunction 
nanocomposite with a 40% weight percentage of 
Cu2O nanoparticles which has a photocatalytic 
activity of 0.0201 min-1. Due to the suppression of 
the recombination of the photoinduced electron-
hole pairs, and enhancement of the visible light 
harvesting ability, the ZnO-Cu2O heterojunction 
has increased photocatalytic activity. Also, based 
on the Mott-Schottky experiments and the radical 
trapping tests, a type II charge transfer process was 
demonstrated for the decomposition of Paraoxon, 
and superoxide radical was proved as the main 
active species for the degradation reaction.
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