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ABSTRACT
Nanoscale materials are widely used in many fields including medicine, engineering, and the environment 
that focuses on the synthesis of nano dimensional particles is a timely topic. Nanomaterials synthesized by 
chemical approaches have intended effects on the environment and human health. In response to these 
challenges, plant-mediated synthesis of inorganic nanoparticles has been a highly innovative research 
area over the last decade. Aqueous and solvent extracts have been employed as efficient resources in 
synthesis-controlled nanostructures and the fabrication of various nanomaterials. The present article 
unveils the possible role of plant biomolecules including amino acids, aldehydes, terpenoids, ketones, 
tannins, and phenolics in the reduction and stabilization of various metal and metal oxide nanoparticles. 
The green synthesized nanoparticles evolved as efficient alternative agents in solving the serious threats 
faced in the field of biomedical, energy conversion, environment, automobiles, electronics, and optical. 
Moreover, catalytic, and antimicrobial applications of green nanoparticles are also critically discussed.
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INTRODUCTION
Advances in material chemistry in the last 

few decades have played a prominent role in the 
development of nanoscience and nanotechnology 
which deals with the modification and utilization 
of particles of the order of one billionth of a meter 
(1 x 10-9 m) called nanomaterials. Nanoscience 
is a microscopic and molecular approach to 
the regulation of matter on larger scales, where 
the physiochemical properties of nanoparticles 
vary significantly from their larger counterparts. 
Unique characteristic features of nanomaterials 
have paved the way for new scientific inventions 
in the field of nanoscience and nanotechnology 

[1,2]. Nanomaterials have been categorized 
as organic (e.g., carbon-based nanomaterials) 
and inorganic (e.g., metal and metal oxide 
nanoparticles). Based on their overall dimension, 
nanomaterials are classified as zero-dimensional 
(e.g., quantum dots), one-dimensional (e.g., 
nanotubes), two-dimensional (e.g., nanosheets), 
and three-dimensional (e.g., nanoflowers). 
Further depending on their physicochemical 
features, they are subdivided into polymeric-based 
nanomaterials (e.g., nanobiocomposites), carbon-
based nanomaterials (e.g., carbon nanotubes), 
lipid-based nanomaterials (e.g., liposomes), 
semiconductor-based nanomaterials (e.g., CdTe), 
layered nanomaterials (e.g., perovskites and LDH) 
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and ceramic based nanomaterials (e.g., nano-oxides 
of Si, Al, Ti, and Zr) [3,4]. Among all the inorganic 
nanomaterials, transition metal and metal oxide-
based nanoparticles such as Cu, Fe, Co, Mn, Zn, 
Cr, Ni, Ag, Ti, and Au are of the most important 
scientific concern due to their outstanding and 
diverse applications in various sectors such as 
chemical, photonics, electronic, food science, 
energy harvesting, environmental, biomedical, 
pharmaceutical, agricultural and industrial [5-7]. 

An increased thrust in the scientific realm 
influenced the researchers to develop two major 
approaches viz.: top-down and bottom for the 
synthesis of nanomaterials with desired properties 
(Fig. 1). In a top-down approach, the active bulk 
material is reduced to nano-sized nanomaterial 
under the influence of chemicals, radiation or 
mechanical shearing. Different techniques utilize 
the top-down principle to produce nanomaterials 
which include lithography, mechanical milling, 

sputtering, etching, pulse laser ablation, pulse wire 
discharge, evaporation condensation reaction, and 
ion implantation. However, top-down approaches 
suffer from limitations which include high cost, 
use of toxic chemicals, ineffective in producing 
nanomaterials with desired properties, and 
difficulties to control the size of nanoparticles. 
The bottom-up approach involves the pile-up of 
the atoms, ions, and molecules to form complex 
structures of nano dimension. A few techniques 
of the bottom-up approach are the chemical vapor 
deposition process, laser pyrolysis, sol-gel method, 
plasma arcing, wet synthesis, self-assembly process, 
electrochemical, sonochemical, metal organic 
decomposition, hydrothermal, solvothermal, and 
spinning [8].

Anthropogenic activities including combustion 
of fossil fuels, oil spills, agriculture, deforestation, 
mining, and various industrial sectors such as 
food, textile, paper, and pharmaceutical have  
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Fig. 1. Schematic representation of major approaches involved in the nanomaterial synthesis
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been significant contributors to environmental 
contamination. Several research studies indicated 
the impact of high environmental contamination 
on living organisms and their positive relationship 
with increasing health problems [9]. Myriad 
nanoparticles have found applications in 
environmental remediation as sensors, adsorbents, 
and photocatalysts for the elimination of toxic 
chemicals and pollutants. Recent advances in novel 
polymer fabricated nanomaterials employed for the 
treatment of industrial effluents and wastewater 
contaminated with radionuclides, metal ions, 
and chemical solutes were highlighted by several 
researchers [10,11].

In addition to the environmental applications, 
a plethora of engineered nanomaterials proved 
to be strategically effective antimicrobial agents 
complementary to traditional antibiotics, 
antifungal, and antiviral agents. Antimicrobial 
nanomaterials include diversified groups of 
inorganic metal and their oxides as they possess 
a range of intrinsic and chemical composition 
properties that influence innate antimicrobial 
mechanisms such as the disruption of the plasma 
membrane, diffusion into the cytoplasm, and the 
degradation of nucleic acids and enzymes. [12-14].

Herein, we provide a comprehensive view of 
scientific investigations made in the synthesis of 
inorganic nanoparticles using plants as a model 
for biological sources of nanoparticle synthesis 
and their diversified application in the field of 
environmental remediation and the biomedical 
industry.

CONVENTIONAL METHODS OF NANOPAR-
TICLE SYNTHESIS

The efficiency of nanoparticles is greatly 
influenced by the shape, size, and surface topology 
which is further reliant on the method of synthesis. 
For several decades, conventional techniques falling 
under the category of physical or chemical methods 

such as hydrothermal, sol-gel, combustion, reactive 
grinding, mechanical activation, microemulsion, 
co-precipitation, microwave irradiation, laser 
ablation, sputtering, sonochemical reduction, 
polyol method, and thermal deposition have 
been utilized to synthesize the nanomaterials of 
specific dimension to control the properties of 
nanomaterials [15,16]. 

However, these methods are known to suffer 
from significant drawbacks as presented in Table 1. 
The effort to synthesize the nanomaterials of desired 
properties and dimensions involving sustainable 
approaches opened unique and new opportunities 
in this emerging field of research [17].

NANOTECHNOLOGY AND GREEN CHEMIS-
TRY

Researchers have developed multiple routes 
for the synthesis of nature-friendly nanoparticles 
utilizing natural sources to provide the advantages 
of clean, nontoxic, and environmentally adequate 
synthesis methods. The green and biological 
synthesis of nanoparticles is an attractive 
practice that enables synthesis in an aqueous 
environment with minimum cost and low energy 
investment which could easily be scaled up to 
a higher level. Numerous studies have already 
showcased the greater efficiency of plants [18-
20], edible and nonedible mushrooms [21,22], 
and microorganisms [23-25] for the synthesis 
of inorganic nanoparticles as shown in Fig. 2. 
The application of green chemistry principles 
in the synthesis of nanoparticles have paved the 
way for sustainable development in the field of 
nanotechnology.

ROLE OF PLANTS IN THE SYNTHESIS OF 
METAL AND METAL OXIDE NANOPARTICLES

The insight that plants could bioaccumulate 
and reduce metal ions has opened multiple 
options for considering their use as an alternate 
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Method Drawbacks References 
Hydrothermal  Slow kinetics of crystallization; rigorous pressure; High-cost; Long reaction period 

[16] 
 

Irradiation  Aggregation of particles 
Laser ablation  High-cost; Lager number of colloids required; High energy consumption; Time-consuming 
Mechanical activation High energy consumption; High calcination temperature; contamination of iron 
Micro-emulsion  Complex process; Low yield; High influence of surfactant traces on purity of final product; Low thermal stability 
Sonochemical  High-cost; Contamination by precursors 
Co-precipitation Hazardous by-products; high calcination temperature 

 
 
 
  

Table 1. Limitations of conventional nanoparticle synthesis methods
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way of synthesizing nanoparticles. The plant-
mediated synthesis of nanomaterials provides 
multiple advantages over the microbial synthesis 
approach in low cost, reliability, simplicity, non-
pathogenicity, short reaction time, and control 
over the reaction. Several plants including Aloe 
barbadensis, Acalypha indica, Apiin, Avena sativa, 
Azadirachta indica, Camellia sinensis, Brassica 
juncea, Cinnamomum, Carica papaya, Coriandrum 
sativum, Emblica officinalis, Eucalyptus, Garcinia, 
Jatropha, Medicago sativa, Ludwigia adscendens, 
Mentha piperita, Nelumbo nucifera, Ocimum 
sanctum, Pelargonium roseum, Psidium guajava, 
Sedum alfredii, Tanacetum vulgare, and Terminalia 
catappa have been reportedly employed for the 
synthesis of inorganic nanoparticles [26,27]. The 
process of nanoparticle synthesis is initiated by 
the addition of metal ions solution to an aqueous 
extract of various parts of the plants such as roots, 
stems, bark, leaves, flowers, and fruits at different 
reaction conditions [28,29]. The phytochemicals 
(viz., aldehydes, alkaloids, flavonoids, ketones, 

organic acids, phenolic acids, and terpenoids) 
and bioactive compounds (complex terpenes, 
enzymes, vitamins, and minerals) in the plant 
extracts have greater potential to reduce metal 
ions into their corresponding metal and metal 
oxide nanoparticles. In addition, polysaccharides, 
proteins, enzymes, and amides in plant extracts 
play a dual role by acting as both reducing and 
stabilization agents [30,31]. Some examples of 
potential plants investigated for the synthesis of 
inorganic nanoparticles are shown in Fig. 3.

Flavonoids, a large group of polyphenolic 
compounds comprising anthocyanins, chalcones, 
flavones, flavanols, flavanones, and isoflavonoids 
are known for their chelation and bioreduction 
properties. The release of reactive hydrogen or 
oxygen atoms from the tautomeric transformation 
of flavonoids from enol-form to keto-form is 
believed to be involved in the bioreduction of metal 
ions. For example, Ocimum sanctum leaf extracts 
naturally contain high amounts of quercetin 
(flavonoid) containing OH- and keto groups. 
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Fig. 2. Few examples of biomaterials used in the synthesis of green inorganic nanoparticles
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During the synthesis of Ag nanoparticles, quercetin 
reacts with AgNO3 as an acid using OH- groups 
attached to the carbon atoms of an aromatic ring 
that participates in the reduction of Ag ions to Ag 
nanoparticles and prevents agglomeration in the 
reaction medium [32]. In addition, quercetin can 
chelate carbonyl and hydroxyl groups at the C3 and 
C5 site and catechol groups at C3 and C4 positions 
which are further involved in the chelation of 
several metal ions viz., Al3+, Cr3+, Co2+, Cu2+, Fe2+, 
Fe3+, Pb2+ and Zn2+ [31].

Phenolic acids are plant-derived essential 
biomolecules containing phenolic rings and 
functional groups of esters, glycosides, or carboxylic 
acids. Their benzene ring plays a significant role 
in the reduction and metal chelation. Various 
studies demonstrated the reducing ability of caffeic 
acid, chlorogenic acid, cinnamic acid, coumaric 
acid, ellagic acid, gallic acid, ferulic acid, and 
protocatechuic acid [33,34]. Propyl gallate, an 
ester derivative of gallic acid, has been applied as 
a reducing and stabilization agent for the synthesis 

of Ag nanoparticles by Ping and Nian, [35]. The 
hydrogen bonds of propyl gallate-coated Ag 
nanoparticles deliver a chain structure that results 
in a plasmon resonance peak in the IR wavelength 
region which allows the determination of major 
antioxidants.

Terpenoids are volatile organic components 
constituting 90 % of essential oils produced by 
plants as secondary metabolites. Isoprenoids, a 
basic unit of terpenoids, act as the building blocks 
of other metabolites including plant chlorophyll, 
carotenoids, hormones, sterols, and turpentine. 
Mono and sesquiterpenoids are identified to play a 
significant role in the synthesis of nanoparticles [36]. 
Leaf extracts of Leucas martinicensis have produced 
spherical and crystalline Ag nanoparticles with the 
action of terpenoids [37]. In addition, the ability 
of A. indica in the synthesis of ZnO nanoparticles 
was attributed to the strong reduction or oxidation 
reaction carried out by terpenoids present in the 
leaf extracts [38]. 

Monosaccharides such as glucose and fructose-
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 Fig. 3. Common plants used in the synthesis of inorganic nanoparticles
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containing keto groups are capable of undergoing 
a series of tautomeric transformations involving 
the development of nanoparticles. The reducing 
ability of polysaccharides is greatly dependent on 
the ability of monomeric sugars to adopt an open 
chain form within an oligomer to provide access 
for metal ions to an aldehyde or keto group [39]. 
Various amino acids serve as excellent capping and 
stabilization agents in the development of inorganic 
nanoparticles. Several researchers reported the 
inherent ability of amino acids in directing and 
assembling superstructures [40,41]. Courrol and 
Matos [42], conducted the experiments using 21 
amino acids for the synthesis of silver nanoparticles 
where authors observed that five amino acids viz., 
tryptophan, tyrosine, methionine, cysteine, and 
histidine were proficient in the reduction and 
stabilization of nanoparticles. In another study, 
photo-reduced gold nanoparticles were synthesized 
using arginine, aspartic acid, valine, threonine, and 
tryptophan. A relationship between polarizability 
and the oxidation potential of an amino acid was 
reported during the nanoparticle formation upon 
irradiation. 
APPLICATIONS OF BIOGENIC METAL AND 
METAL OXIDE NANOPARTICLES

In recent years, nanomaterials have found 
applications in almost all disciplines due to their 
improved properties at the nanoscale. Some 
of the major applications of nanotechnology 
are fundamental fields, mainly environmental 
remediation, agriculture, electronics, and medicine. 
With the scientific community on a constant 
lookout for highly biocompatible and sustainable 
ways of environmental pollution mitigation, the 
toxic effects of xenobiotics have put nanoscience 
and nanotechnology as the front runners [43-45]. 
The applications of biogenic nanoparticles in the 
elimination of environmental pollutants and their 
antimicrobial abilities have been briefly reviewed.

ENVIRONMENTAL APPLICATIONS
Several noble and transition-based 

nanoparticles synthesized using plants are utilized 
for water purification due to their high reactivity 
and photocatalytic characteristics owing to the 
narrow band gap. They are also known for their 
extraordinary absorption capability exhibiting 
advantages such as fast kinetics and high 
regeneration ability. Numerous metal and metal 
oxide nanoparticles have been investigated for the 
remediation of several contaminants, but most 

studies have been dedicated to the removal of heavy 
metals and chlorinated pollutants from an aqueous 
environment [46]. Several nanomaterials have been 
frequently utilized for environmental remediation 
since they are flexible toward both in-situ and ex-
situ applications. Table 2 provides an overview 
of inorganic nanoparticles synthesized from 
plant extracts and their reported environmental 
applications.

TITANIUM DIOXIDE NANOPARTICLES
Titanium dioxide has been documented for 

water treatment and air purification due to its 
characterized photocatalytic, semiconducting, 
low cost, nontoxicity, and energy-converting 
properties [47-50]. TiO2 nanoparticles are easily 
activated by photons producing highly reactive 
oxidants like OH-, thus frequently employed for the 
elimination of organic contaminants from various 
media. Goutam et al., [51], described the synthesis 
of TiO2 nanoparticles by using leaf extracts of 
Jatropha curcas and their application for the 
degradation of tannery wastewater in self-designed 
fabricated parabolic trough reactors. At the end 
of photocatalytic treatment, 76.4 % removal of Cr 
and 82.6 % removal of COD from wastewater were 
reported. Crystalline anatase TiO2 nanoparticles 
synthesized from extracts of Diospyros ebenum 
at 600 ºC were evaluated for the mineralization 
of crystal violet under UV light irradiation [52]. 
The results suggested the improved photocatalytic 
activity of nanoparticles due to the fine crystallite 
size and higher surface area available for catalysis.

SILVER NANOPARTICLES
Another frequently utilized nanoparticle for 

the elimination of environmental pollutants is 
silver and its oxides. Silver nanoparticles are well 
known to exhibit unique size and shape which 
provides them with diverse optical and electrical 
properties [53-56]. Chand et al. [57] developed a 
novel route to synthesize silver nanoparticles using 
three plants viz., onion, tomato, and acacia catechu. 
The obtained spherical nanoparticles showed 
complete degradation of MO, MR, and CR within 
20 min and 15 min respectively. In another study, 
Ag nanoparticles synthesized from Ficus hispida 
Linn reduced 4-NP into 4-Aminophenol in 15 
min of exposure [58]. Mehata et al. [59], applied 
Ag nanoparticles synthesized using a medicinal 
plant, Kalanchoe pinnata which is also known as 
Bryophyllum pinnatum for the photocatalysis of RhB 
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Types of 
NPs 

Morphology 
(Size in nm) 

Source Phytochemicals involved Pollutant name Removal Mechanism References 

TiO2 

Spherical; 
20.3 

Malva 
parviflora 

- MO dye 100 % Photocatalytic 
degradation [104] 

Spherical; 
10 to 120 Jatropha curcas Phenols Tannery wastewater 82.2 % 

Photocatalytic 
degradation 

[51] 

Spherical; 
25 to 50 Prunus × yedoensis Phenols Phosphate 10 mg/l 

Photocatalytic 
degradation 

[48] 

Spherical; 
10 to 12 

 

Diospyros ebenum 
 

Aldehydes, 
alcohols and carboxylic acids 

CV dye 100 % 
Photocatalytic 
degradation 

[52] 

Spherical; 
60 to 100 Ageratina alttissima Alcohol and phenol 

MB dye 
Alizarin red 

CV dye 
MO dye 

86.7 % 
76.3 % 
77.5 % 
69.0 % 

Photocatalytic 
degradation 

[49] 

Spherical; 
124 Azadirachta indica - MR dye 

 
~ 66 % Photocatalytic 

degradation 
[50] 

Ag 

Spherical; 
38 Kalanchoe pinnata - RhB dye 87.0 % 

Photocatalytic 
degradation 

[59] 

Spherical, hexagonal, 
cubic; 20-100 

Eucalyptus 
Flavonoids, aromatic amine 

and alcohol 
Azo dyes 

 
90.0 % Adsorption [54] 

Spherical; 
14 to 25 

Mixture of Onion, 
tomato, Acacia catechu 

extract 

Terpenoids, flavones and 
polysaccharides 

MO dye 
MR dye 
CR dye 

95.0 % 
97.0 % 
98.5 % 

Photocatalytic 
degradation 

[57] 

Spherical and 
cuboidal; 

 
Cissus quadrangularis 

Flavonoids, terpenoids and 
alkaloids 

MB dye 100 % 
Photocatalytic 
degradation 

[60] 

Spherical; 
20 Ficus hispida Linn. f. Sterols, tri- 

terpenic acid and flavonoids 
4-NP ~ 97.0 % Photocatalytic 

reduction 
[58] 

Spherical; 
20 to 30 Leucas martinicensis Alcohols or aliphatic amines MB dye ~ 99.0 % Adsorption [37] 

Pt Spherical; 
1 to 3 Atriplex halimus 

Terpenoids, flavonoids and 
alkaloids 

MB dye 91.1 % Photocatalytic 
degradation 

[62] 

3 

Types of 
NPs 

Morphology 
(Size in nm) 

Source Phytochemicals involved Pollutant name Removal Mechanism References 

Au 

Spherical; 
4 to 13 Avicennia marina Alcohols and phenols 4-NP 100 % Adsorption [64] 

Spherical; 20 Green tea leaves - MB dye 100 % Adsorption [63] 

Fe 

Spherical; 
15 to 45 

Black tea leaves and 
vineyard pruning 

residues 
- SDZ 69 % Adsorption [68] 

Spherical; 
5 

15 species of plants Aliphatic amine and phenols 
Cr ions 

 
698.6 mg/g Adsorption [67] 

CuO 

Spherical; 
150 

Mentha piperita L. leaves 
and Citrus × sinensis 

peels 
Phenols and alcohols 

Pb(II) 
Ni(II) 
Cd(II) 

88.8 mg/g 
54.9 mg/g 
15.6 mg/g 

Adsorption [77] 

Spherical; 
2 to 6 Psidium guajava 

Alkaloids, flavonoids 
and terpenoid 

Industrial dyes 83 % 
Photocatalytic 
degradation 

[78] 

Spherical; 
120 Madhuca longifolia - Wastewater treatment 77 % 

Photocatalytic 
degradation 

[79] 

ZnO 

Spherical; 
17.8 Psidium guajava 

Flavonoids 
 

CR dye 
MB dye 

120.3 mg/g 
90.3 mg/g Adsorption [84] 

agglomerated 
sponge-like 

10 to 15 
Ulva lactuca Amino acids MB dye 90 % 

Photocatalytic 
degradation 

[70] 

Spherical; 
40 Peganum harmala 

Polyphenolic compounds and 
proteins 

Cr ions 74.6 mg/g Adsorption [82] 

Spherical; 
11.6 Eucalyptus globulus 

Polyphenols and tertiary 
alcohol 

MB & MO dyes 98.3 % 
Photocatalytic 
degradation 

[71] 

Spherical; 
8 Camellia Sinensis Polyphenols MB dye 84.3 % 

Photocatalytic 
degradation 

[20] 

Spherical; 
15 to 25 Artocarpus heterophyllus Terpenoids and flavonoids RB dye 80 % 

Photocatalytic 
degradation 

[83] 

Spherical; 
100 Buchanania lanzan Flavonoids MG dye ~ 97.0 % 

Photocatalytic 
degradation 

[75] 

Table 2.  Environmental applications of inorganic nanoparticles synthesized using plants.
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under dark conditions. Ag nanoparticles including 
bimetallic nanoparticles have found applications as 
sensors in the sensing and detection of pollutants. 
For instance, green Ag-doped Ce nanoparticles 
synthesized from Cissus quadrangularis were 
highly efficient in the detection of Cd2+ ions even in 
presence of other heavy metals such as Co2+, Pb2+, 
Hg+, Ni2+, As3+, Mn2+, Zn2+ and Fe3+ [60]. 

PLATINUM AND GOLD NANOPARTICLES
In addition to silver, other noble metals such as 

Pt-based nanoparticles and Au-based nanoparticles 
were successfully synthesized by many researchers 
using various plant extracts [61].  Eltaweil et al. 
[62], proposed a promising route of the green 
synthesis of Pt nanoparticles with the size 1 to 3 nm 
using leaf extract of Atriplex halimus and further 
investigation suggested the high catalytic activity 
for the complete degradation of MB in 5 min at 
100 ppm of dye concentration. To investigate the 
efficacy of reducing agents in the degradation of 
organic compounds, Gupta et al. [63] explored 
the use of Sn(II) to enhance the degradation of 
MB by Au nanocatalysts synthesized from green 

tea leaves. It has been demonstrated that SnCl2 
acts as a reducing agent facilitating the electron 
transfer and Au nanoparticles as a catalyst in 
the reaction. Furthermore, encapsulation of 
nanoparticles using natural polymers is important 
to overcome concerns regarding aggregation and 
recoverability. Nabikhan et al. [64], fabricated 
Au nanoparticles synthesized from an aqueous 
extract of Avicennia marina using sodium alginate 
and used as a heterogenous catalyst against 4-NP 
which was proved to be a potent, eco-friendly nano 
biocomposites catalyst for the remediation. A fever 
report in the literature suggested the unexplored 
efficiency of these nanoparticles for environmental 
applications. 

IRON-BASED NANOPARTICLES
Iron-based nanosorbents are particularly 

attractive due to their inherent magnetic property 
that favors their easy separation from the reaction 
medium [65,66]. Iron and its oxide-based 
nanoparticles synthesized from plant extracts are 
studied for the elimination of several contaminants 
such as antibiotics, heavy metals, and textile 

4 

Types of 
NPs 

Morphology 
(Size in nm) 

Source Phytochemicals involved Pollutant name Removal Mechanism References 

Polyhedron; 
20 to 120 Corymbia citriodora 

Citronellal, linalool, catechin, 
gallic acid, coumaric acid and 

protocatechuic acid 
MB dye 83.4 % Adsorption [76] 

Spherical; 
9.6 to 25.5 Azadirachta indica 

Terpenoids and reducing 
sugars 

MB dye 82.1 % 
Photocatalytic 
degradation 

[38] 

Spherical; 
15 to 46 Vitex trifolia 

Alcohols, aromatic and 
aliphatic amines 

MB dye 92.1 % 
Photocatalytic 
degradation 

[72] 

Spherical; 
52 to 253 

Coriandrum sativum - Anthracene 96.0 % 
Photocatalytic 
degradation 

[74] 

Hexagonal; 
52 to 76 Beta vulgaris Flavonoids and betalains MG and MB dyes 

95.0 % 
80.0 % 

Photocatalytic 
degradation 

[80] 

Hexagonal; 
9 to 38 Azadirachta indica 

Flavonoids, limonoids, 
isoazadirolide and 

azadirachtin 
MB dye 92.0 % 

Photocatalytic 
degradation 

[93] 

Spherical; 
20 to 30 Garcinia xanthochymus 

Flavonoids, garciniax-
anthone and xanthochymol MB dye 94.0 % 

Photocatalytic 
degradation [81] 

Spherical; 
12 to 72 Citrus paradisi 

Flavonoids, limonoids and 
carotenoids 

MB dye 56 % 
Photocatalytic 
degradation 

[29] 

Spherical; 
5 to 15 Cassia fistula Polyphenols and flavonoids MB dye 98.7 % 

Photocatalytic 
degradation 

[75] 

Cr5O12 
Spherical; 

56.9 Azadirachta indica 
Alkaloids, flavonoids and 

azadirachtin 
MO dye 59.0 to 95.0 % 

Photocatalytic 
degradation 

[106] 

Ni 
Spherical; 

 Citrullus colocyn 
Alkaloids, flavonoids, and 

carotenoids 
RY-160 dye 91.4 % 

Photocatalytic 
degradation 

[44] 

Mo 
Spherical; 
25 to 35 

Centella 
asiatica 

 

Isoprenoids and 
phenylpropanoid derivatives 

DG dye 
Navy Blue dye 

81.3 % 
82.4 % 

Photocatalytic 
degradation [43] 

 
  

Continued Table 2.  Environmental applications of inorganic nanoparticles synthesized using plants.
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dyes. Xiao et al. [67], reported the synthesis of 
iron nanoparticles with increased stability using 
15 different plant extracts viz., N. indicum, A. 
moluccana (L.) Willd, C. camphora (L.) Presl., P. 
orientalis (L.) Franco, G. robusta, B. variegata L., 
Black tea, Oolong tea, A carambola L., D. regia, 
E. citriodora, L. speciosa Pers., S. aromaticum, S. 
jambos (L.) Alston and D. longan Lour. The major 
phytochemicals responsible for the reduction 
and stabilization of Fe nanoparticles were also 
determined. Nanoparticles synthesized by S. 
jambos (L.) Alston extract exhibited significant 
adsorption capacity with 698.6 mg Cr (VI) per g 
of iron. Similarly, for the synthesis of zero-valent 
iron nanoparticles, Conde-Cid and his co-workers 
[68] employed two natural aqueous extracts, 
black tea leaves, and vineyard pruning residues. 
It was concluded that the prepared nanoparticles 
were able to eliminate 58 % of sulfadiazine via an 
adsorption mechanism whereas 69 % through a 
catalytic degradation mechanism.

COPPER BASED NANOPARTICLES
Other prevalent transition metal nanoparticles 

are Cu and their respective oxide-based 
nanoparticles which are generally used against 
environmental remediation [69-76]. Green 
synthesized CuO nanoparticles prepared using 
extracts of mint leaves and orange peels were 
utilized for the removal of heavy metals. Maximum 
uptake capacity followed the order of Pb(II) > 
Ni(II) > Cd(II) which was recorded at an adsorbent 
dosage of 0.33 g/L and pH 6.0 within 60 min of 
contact time [77]. Cu nanoparticles synthesized 
using Psidium guajava extract were reported as 
an excellent heterogeneous catalyst exhibiting 
the maximum degradation (93 % and 81 %) of 
industrial dyes NB and RY-160 respectively [78]. 
In another article, Madhuca longifolica-based CuO 
nanoparticles demonstrated 77 % of photocatalytic 
degradation of MB dye after 150 min of visible light 
irradiation suggesting the durability of the green 
nanoparticles [79]. 

ZINC OXIDE-BASED NANOPARTICLES
ZnO nanoparticles possess unique 

physiochemical properties, due to dimensional 
characteristics and surface morphology. These are 
known to exhibit good adsorptive and catalytic 
behavior, making them suitable materials in 
the field of environmental remediation [80,81]. 
Fazlzadeh et al [82] demonstrated the synthesis 

of ZnO nanoparticles using powdered Peganum 
harmala seed extract (ZnO) and the synthesized 
nanoparticles were coated with powdered activated 
carbon of Peganum harmala seed (PPAC) for 
enhancing adsorption capacity. ZnO/PAC showed 
the highest adsorption efficiency (68.4 mg/g) 
for the Cr(VI) followed by PPAC and bare ZnO. 
The study revealed the significance of surface 
modification of nanoparticles for enhanced 
removal of heavy metals. MB, a widely used 
thiazine dye was removed from aqueous samples 
with ZnO nanoparticles synthesized using an 
aqueous extract of Ulva lactuca. The degradation of 
dye was carried out using natural sunlight. Under 
optimum conditions, the process showed 90.4 % 
degradation of dye. The photo-nanocatalyst proved 
to be effective for the oxidation and degradation of 
MB which proceeded at high reaction rates [70]. 
Vidya et al. [83], reported the synthesis of ZnO 
nanoparticles utilizing leaf extracts of Artocarpus 
heterophyllus with an average size of 15 to 25 nm. 
The green synthesized ZnO nanoparticles showed 
outstanding photocatalytic degradation efficiency 
(> 80 % within 1 h) against Rose Bengal dye, 
the main water-pollutant released by the textile 
industries.

BIMETALLIC NANOPARTICLES
Several investigations have demonstrated the 

utilization of bimetallic nanoparticles as a means 
of overcoming some of the drawbacks associated 
with monometallic nanoparticles. Mixed metallic 
oxide nanomaterials synthesis from the green route 
has also been investigated by several researchers for 
their efficiency in environmental remediation. For 
instance, Sahoo et al. [84], reported the preparation 
of ZnO-ZnFe2O4 mixed nanocomposites using 
leaf extracts of Psidium guajava and evaluated 
wastewater remediation. Results suggested 
significant adsorption of CR and MB from 
wastewater with the maximum adsorption capacity 
of 120.3 mg/g and 90.3 mg/g respectively. The 
study also revealed the prominent role played 
by the mixed nanocomposite in improving 
plant immunity in addition to the growth and 
development of the plant. In another study, Cu-Ag 
and Cu-Ni bimetallic nanoparticles prepared using 
ginger rhizome powder were utilized as nano-
catalysts for the reduction of 2-NP, 4-NP, MO, CR, 
and RhB. In addition to their outstanding ability to 
degrade, the nano-catalysts also showed excellent 
stability and reusability [85], Ismail, et al., 2018. 
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ANTIMICROBIAL APPLICATIONS OF 
NANOPARTICLES

As a result of rapid evolution through genetic 
mutations, several microorganisms have established 
resistance against various antimicrobial agents. 
Thus, many researchers have devoted themselves 
to developing new potential therapeutic agents to 
fight against resistant pathogenesis which is one 
of the major challenges in recent years. Biogenic 
inorganic nanoparticles have shown remarkable 
antimicrobial action against multi-drug resistant 
microorganisms via multiple mechanisms targeting 
cell membranes, proteins, and genetic material 
(Table 3). Similarly, noble metals reduced to nano 
dimension are also being coated on wound dressing 
as a preventable measure of microbial infection in 
wounds [86-88]. There are several examples where 
metallic and metal oxide nanoparticles synthesized 
from plants have been explored for antimicrobial 
activity against many microbial pathogens. Table 
4 summarizes the various inorganic nanoparticles 
investigated for their antimicrobial activity. 

ANTIBACTERIAL EFFECT OF NANOPARTI-
CLES

Metal and metal oxide nanoparticles often 
exhibit high antibacterial properties against 
bacterial pathogens. Through vast analysis of 
literature, it has been observed that nanoparticles 
can be bacteriostatic or/and bactericidal depending 
on their dimension, concentration, and capping 
method against both gram-positive and gram-

negative [89,90]. In the case of gram-positive 
bacterial strains, the cell wall composition shows 
a thick layer of peptidoglycan with a strongly 
negative surface charge that enables the electrostatic 
interaction between nanoparticles and cells. This 
facilitates the penetration of nanoparticles allowing 
the entry of negatively charged superoxide radical 
anions and peroxide ions to ensure cell destruction 
at relatively low concentrations [91,92]. Unlike, 
gram-positive bacteria, gram-negative strains 
contain a thin peptidoglycan polymer covered by 
an outer polysaccharide membrane with structural 
lipopolysaccharides. This enables the generation 
of reactive oxygen species and oxidative stress 
resulting in bacterial cell destruction and inhibition 
[93-95]. Sundrarajan et al. [97] stated that ZnO 
nanoparticles are involved in oxidative stress via 
the generation of reactive oxygen species and 
damage the structural protein of bacterial strains. 
Nanoparticles may also interfere with genetic 
material and destroys the respiration chain and 
thus inhibit cell respiration [98].

Ag nanoparticles synthesized using aqueous 
extracts of Cissus quadrangularis exhibited 
antibacterial activity against Escherichia coli, 
Bacillus subtilis, Streptococcus pneumoniae, and 
Staphylococcus aureus at 60 g/ml. [60]. Similarly, 
Ag nanoparticles synthesized from Leucas 
martinicensis leaf extract inhibit S. aureus, B. 
subtills, S. typhi, and E. coli with a zone of clearance 
of about 11.4 mm, 13.0 mm, 9.4 mm, and 11.5 
mm respectively. Several researchers attributed the 

5 

Table 3.  
 

Nanoparticles Possible Mechanism of action References 

Ag 
 

Cell wall disruption; Cell membrane disintegration; 
Massive free radical production; Cytotoxicity, DNA fragmentation; Vital enzyme inhibition, 

loss of cellular fluids; Disruption in electron transport; Inhibits cellular respiration and 
cellular growth; 

Affects the permeability 

[17,98, 100, 102] 

ZnO Generation of free reactive oxygen species; Loss of membrane integrity; Inhibits cell growth [69,97,105] 

Au Damage the cell wall [89,90] 

TiO2 Generation of free reactive oxygen species [91] 

Cu Damage the cell membrane, cytoplasm components, and intracellular enzymes [92] 

Cr Cell cytotoxicity [106] 

Fe Ruptures the cell membrane [65,66] 

Pt 
Membrane damage; Increase the level of free reactive oxygen species; Injury of DNA; Induces 

apoptosis or necrosis 
[61,86] 

 
  

Table 3. Mechanism of antimicrobial action of inorganic nanoparticles.
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Type of 
NPs 

Morphology 
(Size in nm) 

Source Phytochemicals Involved Application 
Antimicrobial activity 

method 
References 

Ag 

Spherical; 38 Kalanchoe pinnata - Escherichia coli Disk diffusion method [59] 

Spherical; 14-17 
Acanthospermum 

australe 
Amines 298 fungal and bacterial microorganisms 

Broth microdilution 
method 

[107] 

Spherical; 5-30 Conocarpus lancifolius 
Flavanones and carboxylic acids 

 

Staphylococcus aureus, Streptococcus 
pneumoniae, 

Rhizopus stolonifer and Aspergillus flavus 
Agar well diffusion method [100] 

Spherical; 18 Citrus limetta Alcoholic groups 

Candida albicans, C. glabrata, C. 
parapsilosis, C. tropicalis, Escherichia 

coli, Streptococcus mutans, Micrococcus 
luteus, Staphylococcus epidermidis and S. 

aureus 

Agar well diffusion method [99] 

Spherical and quasi-
spherical; 

1.2-62 
Lysiloma acapulcensis 

Alkyl halides, proteins and 
phenols 

Candida albicans, Escherichia coli, 
Staphylococcus aureus and Pseudomonas 

aeruginosa 
Agar well diffusion method [101] 

Spherical; 
45-110 

Brillantaisia patula and 
Crossopteryx 

febrifuga 

Alcohols, phenols, carboxylic 
acids and aldehydes 

Escherichia coli, Pseudomonas aeruginosa 
and Staphylococcus aureus 

Broth microdilution 
method 

[55] 

Spherical and 
cuboidal 

Varied sizes 
Cissus quadrangularis 

Flavonoids, triterpenoids, 
carbonyl and carboxylic acids 

 

Escherichia coli, Bacillus subtilis, 
Streptococcus pneumoniae and 

Staphylococcus 
Agar well diffusion method [60] 

Spherical 
Hexagonal, 

triangular, rod; 
Variable sizes 

Myristica fragrans Phenols 
Pseudomonas aeruginosa, Escherichia 

coli, Staphylococcus aureus and Bacillus 
subtilis 

Disk diffusion method [56] 

Spherical; 
20-93 

Phyllanthus 
emblica 

Carboxylic acids, ketones, and 
aldehydes Acidovorax oryzae Agar well diffusion method [14] 

Spherical; 
25-100 

Centaurea 
pumilio 

Alcohols and flavonoids 
Staphylococcus aureus, Streptococcus 
pyogenes, Pseudomonas aeruginosa, 

Escherichia coli and Candida albicans 
Agar well diffusion method [30] 

Spherical; 
20 Ficus hispida 

Triterpenoic acid and 
flavonoids Escherichia coli and Bacillus subtilis Agar well diffusion method [58] 

Spherical; Ocimum sanctum Amines, amides and quercetin Escherichia coli Agar well diffusion method [32] 
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Type of 
NPs 

Morphology 
(Size in nm) 

Source Phytochemicals Involved Application 
Antimicrobial activity 

method 
References 

14-17 

Spherical; 
34 Acalypha indica 

Flavonoids, terpenoids and 
proteins 

Aspergillus fumigatus, A. niger and A. 
flavus 

Disk diffusion method [108] 

Spherical; 
8 Typha angustifolia 

Alcohols, carbonyl groups, 
alkaloids and flavonoids 

Escherichia coli and Klebsiella 
pneumoniae 

Disk diffusion method [94] 

Spherical; 
20, 28 

Clitoria ternatea and 
Solanum nigrum 

Amines 
 

Pseudomonas aeruginosa, Staphylococcus 
aureus, Escherichia coli and Streptococcus 

viridans 
Disk diffusion method [95] 

Spherical; 
20-30 

Leucas 
martinicensis 

Alcohols and alkaloids 
Bacillus subtilis, Escherichia coli and 

Salmonella typhi 
Disk diffusion method [37] 

Spherical; 
40-50 

Coleus 
aromaticus 

Aromatic amine, 
phenolic groups and secondary 

alcohols 
Bacillus subtilis and Klebsiella planticola Disk diffusion method [102] 

Spherical; 
90 Mentha piperita Amines 

 
Escherichia coli and Staphylococcus 

aureus 
Agar well diffusion method [96] 

ZnO 

Spherical; 
3-68 

 

Cassia fistula and Melia 
azadarach 

Proteins, alcohols and 
flavonoids 

Escherichia coli and Staphylococcus 
aureus 

Agar well diffusion method [12] 

Spherical; 
varied 

Ulva lactuca 
 

Alcohols, phenols and aromatic 
compounds 

Proteus vulgaris, Bacillus licheniformis, 
Escherichia coli and Bacillus pumilis 

Agar well diffusion method [70] 

Spherical; 
70 Passiflora caerulea Terpenoids, flavonoids and 

alkaloids 
Escherichia coli, Streptococcus sp., 

Klebsiella sp. and Enterococcus spp. 
Disk diffusion method [105] 

Spherical; 
9.6-25.5 

Azadirachta 
indica 

Proteins, alcohol and phenolic 
groups 

Staphylococcus aureus, Escherichia coli 
and Streptococcus pyogenes 

Shake flask method [38] 

Spherical; 
15-46 Vitex trifolia 

Alcohols, terpenoids, 
flavonoids, amines, aromatic 

and aliphatic amines 

Staphylococcus aureus, Bacillus subtilis, 
Escherichia coli, Pseudomonas 

aeruginosa, Candida albicans, Proteus 
mirabilis and Candida tropicalis 

Disk diffusion method [72] 

Spherical; 
9-38 Azadirachta indica Terpenoids 

Klebsiella aerogenes and Staphylococcus 
aureus 

Agar well diffusion method [93] 
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Table. 4 Antimicrobial activity of inorganic nanoparticles synthesized using plants.
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antibacterial properties of silver to the existence 
of Agº core [99]. However, Ag nanoparticles 
accumulate at the microbial membranes forming 
aggregates and causing perforation leading to 
death [100-102]. Eltaweil et al. [62] reported 
the antibacterial activity of Pt nanoparticles 
synthesized using an aqueous extract of Atriplex 
halimus leaves against K. pneumonia with a zone 
of inhibition of about 17 mm. Mohammed et al. 
[103], investigated the efficiency of biologically 
synthesized zinc nanoparticles against Salmonella 
typhimurium ATCC 14028, B. subtilis ATCC 
6633, and Micrococcus luteus ATCC 9341 and 
compared them with chemically synthesized zinc 
nanoparticles. 

Nanoparticles of metallic compounds 
and metallic oxides have also shown potent 
antibacterial efficacy. Visible light-driven S-doped 
TiO2 nanoparticles exhibited antibacterial 
activity by interfering with the cell integrity of S. 
typhimurimin with a MIC value of 25 mg/ml [104]. 
ZnO nanoparticles synthesized from U. lactuca are 
effective against a set of gram-positive and gram-
negative bacterial strains and significantly showed 
the reduction of B. licheniformis, B. pumilis, E. 
coli, and P. vulgaris by 90 %, 89 %, 90 %, and 91 

% respectively under visible light exposure [105]. 
Research on CuO and Cr5O12 nanoparticles also 
revealed their antibacterial activity against E. coli, 
S. aureus, B. subtilis, and Enterobacter [79, 106].

ANTIFUNGAL EFFECT OF NANOPARTICLES
Fungi display the versatility of adaptation to 

any medium and are capable of colonizing different 
substrates or media in precarious environmental 
conditions. This characteristic of fungal species 
has been significantly contributing to the ever-
increasing infection morbidity and mortality rate. 
Fungistatic and fungicidal activities of several 
metals and metal-derived nanoparticles have been 
studied to control outbreaks caused by pathogenic 
fungi. Spherical Ag nanoparticles synthesized 
from the medicinal plant Acanthospermum austral 
of size 14 nm are proven to have the potent 
antimycotic property tested against Microsporum 
canis, M. gypseum, Epidermophyton floccosum, 
Trichophyton rubrum, T. mentagrophytes, T. 
tonsurans, Malassezia furfur, M. sympodialis, M. 
globose, M. restricta, Candida albicans, C. krusei, C. 
tropicalis, C. parapsilosis and C. glabrata with a MIC 
value ranging from 2.0 µg/ml to 32.0 µg/ml [107]. 
Similarly, Ag nanoparticles derived from another 
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Type of 
NPs 

Morphology 
(Size in nm) 

Source Phytochemicals Involved Application 
Antimicrobial activity 

method 
References 

Spherical; 
6-11 Buchanania lanzan - 

Klebsiella aerogenes, Escherichia coli, 
Pseudomonas desmolyticum and 

Staphylococcus aureus 
Agar well diffusion method [34] 

Spherical; 
5-15 Cassia fistula - 

Klebsiella aerogenes, Escherichia coli, 
Pseudomonas desmolyticum and 

Staphylococcus aureus 
Agar well diffusion method [75] 

Spherical; 
100 

Pongamia 
pinnata 

Alcohol and carboxylic acids or 
their esters 

Staphylococcus aureus and Escherichia 
coli 

Agar diffusion method [97] 

Cr5O12 
Spherical; 

57 
Azadirachta 

indica 
Proteins, terpenoids and 

flavonoids 
Candida albicans, S. aureus and 

Enterobacter sp. 
Agar well diffusion method [106] 

TiO2 

Spherical; 
20-30 

Malva parviflora - 
Salmonella typhimurium, Streptococcus 

pyogenes and Candida albicans 
Disk diffusion method [104] 

Spherical; 
25-50 Prunus × yedoensis - 

Staphylococcus aureus and Escherichia 
coli 

Agar well diffusion method [48] 

Spherical; 
10-12 Diospyros ebenum 

aldehydes, alcohols and 
carboxylic acids Escherichia coli Agar well diffusion method [52] 

Au 

Spherical; 
50 Solanum nigrum 

Flavonoids, alkaloids and 
tannins 

 

Escherichia coli, Pseudomonas 
aeruginosa, S. saprophyticus and Bacillus 

subtilis 
Disk diffusion method [90] 

Spherical; 
150 Mentha piperita Amino acids Escherichia coli Agar well diffusion method [96] 

Pt 
Spherical; 

1-3; Atriplex halimus 
Glycosides, terpenoids, 
flavonoids and alkaloids 

Escherichia coli and Klebsiella 
pneumonia 

Agar well diffusion method [62] 

CuO 
Spherical; 

120 
Madhuca longifolia - 

Escherichia coli, Staphylococcus aureus 
and Bacillus subtilis 

Agar well diffusion method [79] 

 
 

Continued Table. 4 Antimicrobial activity of inorganic nanoparticles synthesized using plants.



K. Sahithya et al. / Antimicrobial and Environmental Applications of Inorganic 

J. Water Environ. Nanotechnol., 7(4): 389-406 Autumn 2022 401

medicinal plant Acalypha indica have exhibited 
antifungal activity against 3 Aspergillus species 
with an IC50 value of 5 mg/ml [108]. The fungicidal 
property of nanoparticles is associated with their 
ability to attach the sulfur-containing proteins of 
the cell membrane causing irreversible damage to 
the cytoplasmic membrane. In addition, metallic 
nanoparticles often produce reactive oxygen species 
and hydroxyl radicals, disrupting the mitochondria 
and leading to the death of fungal cells.

Metallic oxides of various nanoparticles 
synthesized from plant extracts are also possessed 
antifungal properties against several members of the 
Saccharomycetaceae and Trichocomaceae families. 
Previous studies on antifungal activities of ZnO 
nanoparticles revealed that the nanoparticles disrupt 
the cell wall and alter the membrane permeability of 
C. Albicans and C. tropicalis through the generation 
of hydrogen peroxide and superoxide radicals at an 
MFC ranging from 6.25 µg/ml to 50 µg/ml [72]. 
Helmy et al. [104] claimed that TiO2 nanoparticles 
produced from Malva parviflora extract at a 
concentration of 100 µm/ml inhibit the growth of C. 
Albicans. Oxidative stress on yeast cells by reactive 
oxygen species formation led to physical and 
chemical damage to the intracellular components 
and genetic materials.

CONCLUSION AND FUTURE INSIGHTS
Improvement of eco-friendly and reliable 

processes for the synthesis of inorganic 
nanoparticles is a significant step in the field of 
applied nanotechnology and nanoscience. Green 
nanotechnology presents a simple and nontoxic 
protocol of nanoparticle synthesis and it is of 
enormous interest due to economic prospects and 
feasibility. Several regulatory bodies are starting 
to devote additional attention to nanomaterials to 
differentiate the nanoparticles produced by green 
chemistry and classical chemistry. However, this 
flourishing technology needs to be optimized to 
identify the exact phytochemicals accountable for 
the synthesis of nanoparticles; there should be a 
thorough evaluation of the toxic effects of long-
term exposure to the biogenic nanoparticles on 
flora and fauna. Another challenge is achieving 
high reproducibility, the levels of phytochemicals 
in the plants are easily influenced by environmental 
factors such as soil pH, water stress, and change in 
climate and location. Hence, it is certain that the 
properties of plant extracts may vary from batch 

to batch, which will influence the physiochemical 
properties of synthesized nanoparticles. In 
addition, efforts should be geared by researchers 
toward the cost-benefit analysis for commercial 
purposes as there is no data available to date. 
Future research and development of prospective 
green nanoparticle synthesis should be directed 
toward extending laboratory-based work to an 
industrial scale by considering traditional/present 
issues, especially health and environmental 
effects. Accordingly, ample possibilities remain 
for the exploration of new applications of biogenic 
nanoparticles.
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