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ABSTRACT
The etiological factors for increased risk of endocrine and reproductive disorders remain largely unclear 
but a huge number of data from in vitro, in vivo, and epidemiological studies, support the association of 
their incidence and prevalence with long term exposure to endocrine-disrupting chemicals /agrochemicals 
in the modern world. Engineered Nanomaterials (ENMs) could be considered as new alternatives to 
overcome the environmental challenges of endocrine-disrupting pesticides and fertilizers and to reduce 
human health risks of cancer and endocrine toxicity based on their unique physicochemical properties. 
Carbon nanotubes (CNTs) are the initiative members of the big family of ENMs used for developing  
“Nanotechnology-Based Agrochemical” but despite remarkable detoxifying effects mediated by CNTs, 
several controversies and key questions address the toxicity and endocrine-disrupting properties of these 
authoritative agents which may introduce to the global markets a new generation of as nano fertilizers, 
nano adsorbents, and nano pesticides soon. The actual issue stems from a limited number of studies 
invalid toxicology models on CNTs related endocrine disruption and absence of systematic reviews on 
CNTs exposure-mediated endocrine health hazards especially concerning epidemiological and human 
data. In this direction this systematic review focused on the following sub-topics: (1) an overview on 
CNTs applications as novel agrochemicals (2) environmental risks and benefits of CNTs 3) toxicokinetic and 
toxicodynamic of CNTs (4) contribution of CNTs in the pathogenesis of obesity, diabetes and cardiovascular 
effects   4) evidence on the involvement of CNTs in developmental and reproductive toxicities from in vitro 
and in vivo studies (5) conclusions and perspectives.
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INTRODUCTION 
Endocrine-disrupting chemicals (EDCs) comprise 

a huge number of synthetic or natural chemicals with 
industrial, agricultural, pharmaceutical, cosmetic, 
and hygienic applications. They mimic the activities 
of natural hormones through lifetime dietary intakes, 
inhalational exposures, or other possible routes of 
administration [1] . Extensive increase in the incidence 
and prevalence of non-infectious environmental 
induced diseases e.g. breast cancer [2] prostate 

cancer [3], infertility [4] reproductive disorders [5], 
congenital abnormalities [6], neurodegenerative 
diseases [7]and immune dysfunctions [8] , could 
be the consequence of massive use of EDCs over 
the past 50 years [9] Fig. 1 describes some of the 
identifiedhuman health effects of EDCs in both 
genders.

Most of the agrochemicals (e.g. pesticides and 
fertilizers) have endocrine-disrupting properties 
based on their anti-androgenic and/or estrogenic 
effects [10] Nowadays massive use of pesticides 

http://creativecommons.org/licenses/by/4.0/.
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/endocrine-disruptor
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and fertilizers in the chain of food production/
preservation and uncontrolled human exposure 
to these hazardous chemicals, have become a 
very big challenge for global health systems. The 
annual estimated cost of uncontrolled exposure 
to EDCs was determined as $340 billion (2·33% 
of GDP) in the United States and €163 billion in 
European Union (EU) (1·28%) due to health-
care costs and lost productivity but this cost 
estimation is limited to the present generations, 
not to the intergenerational and trans-generational 
epigenetic inheritance [11]. The structural diversity 
of agrochemicals as well as their presence in most 
environmental sources at undetectable levels by 
conventional analytical methods, bioaccumulation, 
biopersitance, and unknown metabolic fate, make 
the environmental detection and risk assessment 
of endocrine disrupting agrochemicals more 
complicated. 

Research into nanotechnology applications 
in the development of novel agrochemicals in 
the form of “nano fertilizers”, “nano adsorbents” 
and “nano pesticides”to overcome current 
health challenges of routine agrochemicals (e.g. 
organophosphates, carbamates, organochlorines, 

synthetic pyrethroids) and improvement of crop 
protection, has become increasingly popular 
over the past decade. Unfortunately, a large 
number of risk assessment studies on engineered 
nanomaterials have characterized the endocrine-
disrupting properties for CNTs because they mimic 
the natural body hormones and interact with 
hormone receptors in humans and wildlife [12]. 
Therefore several controversies and key questions 
address endocrine disrupting properties of CNTs 
which may soon introduce to future market of 
novel agrochemicals. This review aims to identify 
existing knowledge gaps regarding the endocrine-
disrupting properties of CNTs and provide 
directions for future studies in parallel to regulatory 
activities for the development and promotion of 
safer nano agrochemicals.

METHODOLOGY
Study subjects

To specify our focus on the role of CNTs 
on human endocrine disruption through 
environmental exposures by food, water, and air 
contamination, all available original and review 
articles in PubMed were considered for this review 

Figure 1:Schematic and differential overview of some endocrine toxic responses  of  glands 
to Endocrine Disrupting Chemicals(EDCs) 

 

 

 

 

 
 

 

  

Fig. 1: Schematic and differential overview of some endocrine toxic responses  of  glands to Endocrine Disrupting Chemicals(EDCs)
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using the following keywords for inclusion and 
exclusion of selected studies.

Keywords
Carbon nanotube OR CNTs OR Single-Wall 

Carbon Nanotubes OR SWCNTs OR Multi-
Walled Carbon Nanotubes OR Multi-Wall Carbon 
Nanotube OR MWNT OR MWCNT 

And 
Nanoagrochemicals OR Agriculture OR 

Pesticide OR Nanopesticide OR Fertilizer OR 
Nano fertilizer OR Endocrine Disruption OR 
Aryl Hydrocarbon Receptor OR AhR ORLipid 
metabolism OR Obesity OR Fat accumulation OR 
Diabetes OR Cardiotoxicity OR Cardiovascular 
effects OR cardiovascular diseases OR Sexual 
development OR, Female Reproductive Health OR 
Teratogenicity OR Teratogen OR Embryotoxicity 
OREstrogen OR Progesterone OR Testosterone 
OR Androgen OR FSH OR LH OR Cortisol OR 
Ovary OR Ovaries OR Uterine, OR vagina OR 
Hypothalamus–hypophysis axis OR Reproductive 
cycles OR Pregnancy OR birth OR Male 
Reproductive Health effects OR Semen quality OR 
Hypospadias OR Sperm OR Cryptorchidism OR 
Prostate 

NOT 
Nanocarrier, Drug Delivery, Medicine, 

Therapy, Protein Detection, cell and organ 
transplantation,imaging system, Nanodevice, 
bone tissue regeneration, cancer diagnosis, Vector, 
scaffold

RESULTS 
Applications of Carbon Nanotubes asnano 
agrochemicals

CNTs are authoritative members of the 
big family of ENMs based on their special 
physicochemical properties, a wide range of 
agrochemical applications, and a rapid surge of 
industrial attractions in the last decade. CNTs 
are classified into the following two categories: 
SWNCTs – Single-Walled Carbon Nanotubes and 
MWCNTs – Multiple-Walled Carbon Nanotubes. 
Table 1 shows the capabilities of CNTs’ efficient 
fertilizer (plant growth inducer ) by increasing the 
water uptake of plants and enhancing root/shoot 
lengths and plant dry biomass [13], [14]. Table 
1 shows also the potentials of CNTs as excellent 
chemicals for the detection and remediation 
of environmental pollutants e.g. heavy metals, 

persistent organic pollutants (POPs) especially 
organochlorine pesticides, dyes, the residue of 
pharmaceuticals and EDCs based on exhibiting 
strong adsorptive properties [15] and their 
antimicrobial and antifungal properties.

Environmental risks and benefits of CNTs applica-
tions 

Due to the highly porous and hollow structure 
of CNTs, large specific surface area, excellent 
adsorptive capacities as well as their short 
equilibrium times and strong interaction between 
CNTs and pollutant molecules, these highly 
available nanomaterials, have been gradually 
applied for the removal of organic contaminants 
with endocrine-disrupting effects from wastewater 
through adsorption process as novel absorbent 
[16]. Soluble carbon nanotubes (CNTs) have shown 
promising roles as adsorptive materials against 
Endocrine-disrupting chemicals(EDCs)such as 
Bisphenol A (BPA) but the adsorptive capabilities 
of CNTs to EDCs may change the final toxic 
properties of the possible complexes in human 
and other living organisms and cause reproductive 
toxicity[17].

Besides the above remarkable effects of CNTs 
in agriculture and remediation, CNTs provide toxic 
effects on plants by inducing reactive oxygen species 
(ROS) leading to abnormal cell death. Unusual 
accumulation of CNTs in soils can cause hazardous 
effects on soil microbial population, diversity, and 
composition. They can modify the balance between 
plant-toxic metals in soil and accelerate the 
translocation of heavy metals and metalloids into 
the plant tissues. [18]. CNTs release into water and 
wastewater treatment systems when it is used as an 
adsorbent for water and soil treatment [19]. Studies 
on adsorptive properties of SWCNTs indicate that 
SWCNTs effectively adsorbed 17β-estradiol and 
natural hormones in animals and plants which 
cause hormonal deficiencies [20]. Increasing 
environmental levels of MWCNTs is dangerous due 
to their strong affinities to estrogenic compounds 
( 17β-estradiol) in aquatic systems. Hormonal 
affinities of MWCNTs cause definite alterations in 
estrogenic responses to other EDCs by increasing 
their bioavailability[21].It seems that other harmful 
chemicals would be able to bind and activate soluble 
estrogen receptors (ERs) and make more critical 
situations for determining the potential health risks 
of CNTs alone in biological systems.
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Toxicokinetic and toxicodynamic of CNTs as strong 
endocrine disruptors 

3-1Biodistribution: Environmental induced 
toxic effects of CNTs are highly dependent on 
the route of exposure which usually happens 
through the ingestion of possible residues in food 
resources or inhalation of contaminated air during 
occupational activities. The toxicity of CNTs, 
biodistribution, bioaccumulation, and target 
organ toxicity are complex subjects and mostly 
related to the structure and physicochemical 
properties. The number of walls, chirality, 
diameter and length [22], purity, production 
method and CNT functionalization [23] fibrogenic 
properties, hydrophobicity, high surface area and 
biopersistence [24] is the most important CNTs 
characteristics that may cause organ toxicity and 
systemic adverse health in the endocrine system 
but among mentioned variables, the quality of 
functionalization is the most important factor 
which may change the future of CNTs in the body 
[23]. Covalently functionalized CNTs tend to be 
excreted through urine, whereas pristine and non-
covalently functionalized CNTs tend to accumulate 
in spleen and liver of exposed organisms and these 
types of bioaccumulation in liver and spleen may 
cause short term or long term toxic responses and 
disease development [25].

Metabolism: After total body intake and making 
biological effective concentrations of CNTs, some 
members especially SWCNTs isoforms could act 
as competitive inhibitors of CYP3A4, CYP3A5, 
and CYP2D6 and these enzyme inhibitions may 
potentiate the endocrine-disrupting properties 
of other xenobiotics in co-exposure models. 
Computational and animal models showed the 
interaction of CNTs with CYP3A4, a critical and 
high abundance drug-metabolizing cytochrome 
P450 enzyme [26].

3-3Hormonal effects: Dose-dependent inhi-
bition of CYP3A4 by CNTs mediates the conversion 
of testosterone (male steroid hormone) to its major 
metabolite, 6β-hydroxy testosterone and finally 
cause male hormonal dysregulation, interfere with 
the metabolism of other xenobiotics and provides 
a molecular mechanism for toxic responses [27].
Binding assays indicate the binding capacities of 
SWCNTs to Estrogen receptors (ER) as one of the 
most important receptors of human reproductive 
system .Interacting of SWCNTs to estrogen receptor 
alpha in a very low concentration range ( 26.43 - 
259.01 pg/ml) could be considered as a very critical 

mechanism and the main molecular initiating 
event leading to endocrine and reproductive 
toxicity of SWCNTs[28] . Interactions of CNTs 
with gonadotropins is another key mechanism 
for endocrine-disrupting effects of CNTs.Strong 
affinities between blood glycoproteins and CNTs 
have been described by molecular and experimental 
studies. Molecular dynamics, structure, and free 
binding energy of human Follicle Stimulating 
Hormone ( FSH) on the surface of SWCNT causes 
that human FSH in aqueous solution strongly 
adsorbs onto SWCNT and this strong interaction 
could change the hormonal activity of FSH, causes 
dysregulations in hypothalamus-hypophysis axis 
and endocrine and reproductive toxicity [29]. The 
same interaction could be predictable between other 
types of CNTs and circulating hormones in the body 
based on the mentioned physicochemical properties. 

Effects on ovaries: The effects of MWCNTs on 
ovarian function and granulosa cell steroidogenesis 
showed the inhibitory role of MWCNTs with 
different lengths on progesterone secretion and 
the expression of steroidogenic acute regulatory 
protein based on cytotoxicity, oxidative stress and 
mitochondria damages mechanisms [30].

CONTRIBUTION ON CNTS IN THE PATH-
OGENESIS OF OBESITY, DIABETES, AND 
CARDIOVASCULAR EFFECTS 
Lipid metabolism and obesogenic effects of CNTs

Because of the global increase in the prevalence 
of obesity [31] and its related syndromes e.g. 
nonalcoholic fatty liver disease (NAFLD) [32] 
and metabolic syndrome [33], the metabolic and 
obesogenic effects of all chemicals and nanomaterials 
should be concerned by health regulatory agencies 
before any official approval. For the first time, one 
study points towards the cardiovascular risks of 
MWCNTs through inhalational exposures and 
showed the role of a single intratracheal instillation 
of MWCNTs in a dose range of 0, 18, 54 or 162μg/
mouse on lipid profile of female C57BL/6 mice. 
Treated animals showed a significant increase in 
plasma total cholesterol, low-density/very low-
density lipoprotein (LDL, VLDL), APR proteins, 
SAA3 and haptoglobin, and histopathological 
studies showed abnormal changes in liver 
morphology following exposure to MWCNTs with 
different physicochemical properties. The results 
of this study link the importance of MWCNTs 
pulmonary exposure with abnormal body weight 
gain, changes in lipid metabolism, and increased 
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risk of cardiovascular disease [34].
Another parallel study at the same year (2015) 

revealed the role of intratracheal exposure to two 
different MWCNTs on development of nonalcoholic 
steatohepatitis (NASH)-like phenotype, chara-
cterized by inflammation, hepatic steatosis, and 
fibrosis as well as NASH-like phenotype which was 
consistent with up-regulation of interleukin 6 (IL-
6) and plasminogen activator inhibitor-1 (PAI-1). 
Other abnormalities including overexpression of 
NF-κB, p65, impaired cholesterol homeostasis, and 
suppression of peroxisome proliferator-activated 
receptor-gamma (PPARγ) in the hepatocytes of 
exposed animals were also detected [35]. The next 
study confirmed the aggravating role of MWCNTs 
in nonalcoholic steatohepatitis in Sprague Dawley 
rats by inducing oxidative injury [36].

Diabetogenic effects of CNTs 
The growing use of carbon nanotubes (CNTs) 

in agrochemicals, emphasizes the importance of 
studies on biocompatibility evaluation and specific 
toxic effects of CNTs in the pancreas. In silico studies 
and computational analysis have provided insights 
into the toxic response of CNTs which causes Type 2 
Diabetes Mellitus (T2DM) because CNTs could be 
recognized as pathogens by the Toll-like receptors 
that may induce the expression of inflammatory 
secretory proteins [37]. A study in three months old 
BALB/c mice that exposed to CNTs via injectional 
rout showed the pancreatic uptake of CNTs but 
the pancreas remained histologically normal, 
with no tissue damage, inflammatory infiltrate 
or inorganic deposits despite inducing hepatic, 
renal, pulmonary and spleen tissue damages[38] 
.One other study on the effects of SWCNTs on 
islets and β-cells, demonstrated decreased viability 
of islets cells in a dose-dependent manner by 
overproduction of reactive oxygen species (ROS) 
and raise of oxidative stress biomarkers including 
activities of superoxide dismutase (SOD), 
catalase (CAT), malondialdehyde (MDA);and 
glutathione (GSH) peroxidase (GSH-Px); and 
content of GSH and mitochondrial membrane 
potential (MMP) [39] Direct diabetogenic effects 
of SWCNTs and MWCNTs should be considered 
as important subjects for further preclinical 
evaluations in realistic models by different routes 
of administration.

 
Cardiovascular effects CNTs

There are several primary mechanisms to 

link CNTs’ exposure to cardiovascular toxicity. 
The first is their inflammatory and oxidative 
properties, direct particle interactions based on 
their excellent systemic absorption, bioreactivity, 
and their capacities for neural and hormonal 
alterations [40] . Oral administration of SWCNTs 
could induce cardiovascular diseases in mice and 
rats after excellent GI absorption and distribution 
throughout most of the body organs including 
the liver, lungs, brain, and spleen by inducing 
oxidative stress and eliminating through kidney 
and bile duct [41]. SWCNTs induced oxidative 
stress has investigated rat aortic endothelial cells 
(RAECs) and showed cellular, DNA, and protein 
damages and oxidative damage following SWCNT 
exposure which may result in the progression of 
many serious diseases especially cardiovascular 
abnormalities [42]. 

The potential cardiotoxicity of MWCNT has not 
been elucidated yet but an initial study demonstrated 
the bioreactivity of MWCNT by increasing cell 
permeability in human microvascular endothelial 
cells (HMVEC). This toxic effect was mediated by 
reactive oxygen species (ROS) production, actin 
filament remodeling, and promoting cell migration 
in HMVEC. Studies supported the role of MWCNT 
on elevating the levels of monocyte chemoattractant 
protein-1 (MCP-1) and intercellular adhesion 
molecule 1 (ICAM-1) in HMVEC and elucidated 
the potential human toxicity of MWCNT at the 
cellular level [43]. Male C57BL/6J mice, exposed to 
single doses of three different forms of MWCNTat 
doses of 0.01 - 100 μg showed myocardial 
ischemia/reperfusion injuries based on the form 
of administered MWCNTs [44].Another study 
in 2014, confirmed previous findings regarding 
the cardiotoxic effects of MWCNTs following 
single intratracheal instillation of 1, 10 or 100 μg 
MWCNT in Sprague-Dawley rats inLangendorff 
isolated heart model. Increased endothelin-1 (ET-
1) release and depression of coronary flow during 
early reperfusion were observed in exposed rats 
and the promoting role of MWCNTs on cardiac 
injury and depressed coronary flow by invoking 
vasoconstrictive mechanisms involving ET-1, 
thromboxane, Rho-kinase, and cyclooxygenase 
was discovered [45]. One more study also 
indicated that exposure to MWCNT increases the 
adherence of monocytes onto the endothelium, 
elevates the levels of oxidative stress-mediated 
transformation of monocytes to foam cells which 
are closely correlated with accelerated progression 
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of atherosclerosis [46].
Later studies in 2015 showed the cardiovascular 

toxicity of long-term exposure to MWCNTs 
particularly in occupationally exposed workers 
with preexisting cardiovascular disorders. In this 
study, four different MWCNTs with different iron 
contents and length caused a persistent decrease 
in the heart rate of spontaneously hypertensive 
(SH) rats by inducing sustain inflammation of the 
lung and heart of animals as well as morphological 
lesions after 30 days repeated dose exposures by 
intratracheal instillation[47] Another study in mice 
model of atherosclerosis showed that pharyngeal 
aspiration of 40 μg MWCNT, once a week for 
16 consecutive weeks to female apolipoprotein 
E-deficient (apo E-/-) mice, elevates the levels of 
total protein and lactate dehydrogenase (LDH), 
surfactant protein-D, and mucin without any 
markedly effect on plasma cholesterol levels 
[48] These in vivo and epidemiological evidence 
suggest the cardiotoxicity of both types of CNTs 
and increased risk of myocardial ischemia and 
atherosclerosis in repeated dose and long term 
exposures. 

DEVELOPMENTAL AND REPRODUCTIVE 
TOXICITY OF CNTS 

The underlying mechanisms of CNTs’ hormonal 
activities reviewed in the last sections of this paper. 
As described in Table 2, MWCNTs are embryotoxic 
in rodent and aquatic models. Collected data show 
the dose/concentration-dependent developmental 
toxicity of MWCNTs and SWCNTs with different 
physicochemical properties in acute and repeated 
models by inducing early and late resorption of the 
fetus, decreased fetal weights, fetal malformations, 
fetal death in rodent and aquatic models.

CONCLUSION AND PERSPECTIVES 
Despite restricted, conflicted, and inconclusive 

body of information concerning the real 
concentrations and behavior of CNTs in vitro and 
in vivo models and lack of epidemiological studies 
on CNTs, present evidence suggests the prominent 
role of CNTs in the pathogenesis of endocrine and 
reproductive disorders. The fact that CNTs can 
disrupt the endocrine and reproductive system, 
which may eventually lead to cardiovascular 
toxicity, obesity, changes in lipid metabolism, has 
gathered support from several in vitro and in vivo 
which described in the present review.This review 
showed the underlying mechanism following the 

interference of EDCs with the body’s endocrine 
system which induces structural and functional 
abnormalities in gonads and increases the risk of 
adverse health effects. Differential adverse health 
effects of CNTs start usually after excellent systemic 
absorption through direct binding to circulating 
hormones or hormone receptors, alteration of 
hormonal activity and synthesis and changing 
the biological responses of other EDCs therefore 
beside available data about the CNTs interactions 
with various cells, tissues, endocrine organs, and 
organ systems and whole organs as a prerequisite 
for safety evaluations, special attention to their 
endocrine-disrupting properties for registered new 
CNTs based agrochemicals as new candidates for 
agricultural, medical and industrial applications. 
This review to show a new picture from CNTs 
which could be more complicated than described 
because the wide range of CNTs with different 
physicochemical properties and unrecognized 
conformational changes (e.g. agglomeration) with 
potential impact on bioavailability and endocrine 
toxicity may cause unpredicted toxicities in human 
exposure based on their background factors 
e.g. nutrition, drugs, occupation, and lifestyle 
factors moreover any Chemical change in CNTs 
(functionalization) or conformational alteration 
(agglomeration) can significantly influence their 
toxicity potential and their receptor interactions. 

Apart from these knowledge gaps, some initial 
properties of CNTs, relevant for their interactions 
with plants during agricultural applications have 
been identified and explained in this review. 
Exposure of plants with CNTs is frequently 
associated also with internal translocation of 
CNTs and some systemic effects because they can 
be taken up by herbs and their absorbed fractions 
can induce systemic physiological responses. Low 
plant tissue levels of CNTs (<100  mg  L−1) could 
have beneficial e.g. improved seed germination, 
hormesis, or lack of toxicity but higher external 
concentrations usually cause inhibitory effects on 
plant growth and differentiation. Formation of 
reactive Oxygen Species (ROS) and oxidative stress 
are the main common toxic mechanisms of CNTs 
in plants and animals but despite indicated facts, 
CNTs have been proposed as the main engineered 
nanomaterials for developing next generation of 
nano agrochemicals by industries.

Since the discovery of the first generation 
of synthetic pesticides during World War II, 
numerous chemicals have been developed and 
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applied as an insecticide, rodenticide, fungicide, 
herbicide, fumigants, and disinfectants. Despite 
overproduction and large scale application of 
conventional pesticides, a wide variety of them 
have become practically inefficient because they 
were unable to reach the specific pests or the 
targeted strains may become resistant against 
them [49]. In parallel with the production of 
old and new molecules, undetermined cases of 
acute pesticide poisoning (APP), and countless 
human and animal death via indirect or indirect 
poisoning through systemic absorption of pesticide 
residues in contaminated water, air, and food or by 
occupational routs have happened. Is it possible 
to have similar tragedies with CNTs as novel 
agrochemicals in the next decades? 

Although the production and application of 
highly toxic pesticides banned in many countries, 
widespread use and lack of standardized case 
definition, risk assessment, risk management, 
and regulation globally, led to the pollution of 
ecosystems, a decline in populations of insect 
pollinators, and increased risk of pesticide-induced 
human diseases. However, a surprisingly restricted, 
conflicted, and inconclusive body of information 
exists concerning the real concentrations and 
behavior of these materials in biological systems 
especially in humans and their interactions with 
various cells, tissues, organs, organ systems, 
and whole organs as a prerequisite for safety 
evaluations. Now the critical question is about 
environmental and human safety regarding their 
future wide range of applications, their residues in 
environmental “ Is humanity waiting for a similar 
or even worse scenario with CNTs as the new 
generation of agrochemicals for the next decades? " 
In an optimistic scenario, applications of MWCNTs 
and SWCNTs in the agriculture sector showing 
potential impacts on the endocrine system and 
their efficacy in improvement of plant growth as 
nano fertilizer, absorption of pollutants as nano 
adsorbents or pes control as nano pesticides are 
at a very nascent stage and more risk assessment 
studies are necessary for their future applications. 
Evaluation of endocrine disrupting properties of 
CNTs should be considered as an essential step in 
risk assessment and management of CNTs through 
in vivo and in vitro studies using valid biomarkers 
to emphasize their roles of endocrine systems and 
hormone-dependent although these models are not 
always valid or enough for human risk evaluations 
this is a critical, initial and mandatory step for 

regulating all new chemicals for health, agricultural 
or industrial applications especially CNTs which 
described in this review.
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ABBREVIATIONS 
Apolipoprotein E-deficient mice		�   apoE-/-mice
Acute-phase proteins/ acute-phase 
reactant (APR)		�   APR proteins
Carbon Nanotubes 	�  CNTs
Catalase� CAT
Cytochrome P450 enzyme 	�  Cyp450/CYP
Endocrine-disrupting chemicals		�   EDCs
Endothelin-1		�   ET-1
Engineered Nanomaterials			   ENMs
Follicle Stimulating Hormone		�   FSH
Glutathione		�   GSH
Human microvascular endothelial cells � HMVEC
Glutathione peroxidase		�   GSH-Px
Interleukin 6		�   IL-6
Intercellular adhesion molecule 1		�  ICAM-1
GDP		�   Gross Domestic Product
Single-Wall Carbon Nanotubes		�   SWCNTs 
Monocyte chemoattractant protein-1 � MCP-1 
Multi-Walled Carbon Nanotubes		�   MWCNT
Nonalcoholic steatohepatitis		�   NASH
Nonalcoholic fatty liver disease		�   NAFLD
Reactive Oxygen Species		�   ROS
Serum amyloid A 3		�   SAA3
Type 2 Diabetes Mellitus 	�  T2DM
Lactate dehydrogenase� LDH
Low-density lipoprotein 	�  LDL
Luteinizing Hormone		�   LH
Malondialdehyde			�    MDA
Mitochondrial membrane potential� MMP
Plasminogen activator inhibitor� PAI-1
Peroxisome proliferator-activated receptor-gamma 	 PPARγ
Rat aortic endothelial cells� RAECs
Spontaneously hypertensive rats		�   SH rats
Superoxide dismutase		�  SOD
Nuclear factor-kappa B		�   NF-κB
Very low-density lipoprotein		�   VLDL
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