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ABSTRACT
In the present study, the adsorption behavior of mesoporous molecularly imprinted polymers 
for bisphenol A was investigated. Molecularly imprinted nanopolymers were synthesized by 
precipitation polymerization using bisphenol A as a template molecule. Two molecular ratios of 
template: functional monomer: cross-linker (1:6:30 (MIP-6) and 1:4:20 (MIP-4)) was considered 
for experiments. Ethylene Glycol Dimethacrylate (EGDMA) as a Crosslinker, methacrylic acid (MAA) 
as a functional monomer and 2, 2´-azobisisobutyronitrile (AIBN) as an initiator were used for the 
synthesis of polymers. Moreover, Langmuir and Freundlich adsorption isotherms, and pseudo-first-
order and pseudo-second-order kinetic models were studied for the adsorption mechanism. Results 
showed that porous polymers with an average pore diameter of 13 to 17 nm and a specific surface 
area of 326 to 439 (cm3/g) were obtained. The maximum adsorption capacity was 400.1 μmol/g 
for MIP-6. SEM analysis showed that the synthesized polymer particles were spherical. The highest 
adsorption efficiency of bisphenol A achieved by MIP-6 was 71%.
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INTRODUCTION
Molecularly imprinted polymers as tailor-

made adsorbent are used to recognize target 
molecules. They have a memory of the size, shape, 
and functionalities complementary to the template 
molecules [1]. Some polymerization approaches 
such as bulk polymerization [2], suspension 
polymerization [3], mini-emulsion polymerization 
[4], and precipitation polymerization [5] have 
been developed to synthesize three-dimensional 
network polymers. 

MIPs prepared by bulk polymerization are ground 
and sieved to obtain a desirable size of particles which 
may result to destroy the cavities, irregular shape, 
and reduction in yield of useful size [6]. 

On the other hand, methods such as suspension 

polymerization and mini-emulsion polymerization 
may face difficulties including prolonged 
optimization of the experimental procedure and 
existing remained emulsifier or stabilizer on the 
adsorbent [7]. Thus, precipitation polymerization is 
preferred because of resulting in the spherical and 
uniform shape of particles, narrow size distribution, 
and a surfactant or stabilizer-free polymerization.

MIPs are prepared by the co-polymerization of 
functional monomers with cross-linkers around 
template molecules. Interaction of the functional 
monomers with templates forms a stable complex 
[8]. After the polymerization process, the template 
molecules are removed, leading to well-defined and 
highly cross-linked three-dimensional cavities. The 
resulting MIPs can rebind the template molecules 
with high selectivity. They are stable, controllable, 
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and resistant to varying temperatures, pH, and 
solvent [9]. The nucleation and growth process of 
MIPs can be adjusted by factors such as functional 
monomer, porogen, cross-linker, template, and 
initiator. [10]. Duo to significant advantages 
of using MIPs including ease and low cost of 
preparation, MIPs have wide applications such as 
protein recognition [11], solid-phase extraction 
[12, 13], sensors [14, 15], environmental [16], drug 
delivery systems [17] and antibody substitutes 
[18]. Bisphenol A (BPA) have extensively used 
in industrial chemical, as a primary raw material 
and as an intermediate to the production of 
epoxy resins, polycarbonate plastic, food and 
drink containers, baby formula bottles, electronic 
apparatus and medical facilities [19-21]. BPA has a 
harmful effect on the environment and endocrine 
systems of humans and animals [22, 23]. Therefore, 
it is essential to remove BPA in various samples due 
to its toxic influence. 

Several attempts have been made to synthesize 
MIP by various polymerization to remove 
BPA from food, water, and milk solution. 
Hiratsuka et al. (2013) synthesized a magnetic 
molecularly imprinted polymers (M-MIPs) for 
BPA detection in river water by a multi-step 
swelling and polymerization method. He showed 
that the binding experiments and Scatchard 
analyses revealed two classes of binding sites 
[24]. In another study, Alexiadou et al. (2008) 
prepared MIP for BPA by two synthetic routes: 
semi-covalent and noncovalent methods. They 
evaluated the molecular imprinting effect using 
the polymers in HPLC and SPE. The most critical 
factors of fabricated MIP were the organic content 
in loading–washing medium and the washing 
volume. Moreover, low flow rates in the elution 
step enhanced extraction recovery [25].

Despite several studies undertaken on BPA 
removal by MIP, there is rare information on 
isotherm and kinetic investigation to find out the 
mechanism of the process. In the present work, 
the precipitation polymerization is selected for 
MIP synthesis due to the advantages mentioned 
earlier. The prepared polymers are characterized by 
Fourier transform infrared spectroscopy (FTIR) to 
determine the functional groups. The morphologies 
and pore size of the obtaining imprinted particles 
are characterized by scanning electron microscopy 
(SEM) and Brunauer–Emmett–Teller (BET) 
gas adsorption measurements, respectively. The 
effect of molecular ratios of template: functional 

monomer: cross-linker on adsorbent capacity, BPA 
removal efficiency, polymer structure, and pore 
size are evaluated. Furthermore, the mechanism 
and binding properties of polymers are studied. 

EXPERIMENTAL
Materials

Bisphenol A (BPA), ethylene glycol 
dimethacrylate (EGDMA), Methacrylic acid 
(MAA), 2, 2´- azobisisobutyronitrile (AIBN) 
were obtained from Sigma Aldrich (Steinheim, 
Germany). AIBN was purified by recrystallization 
from methanol before use. Acetonitrile, acetone, 
acetic acid, and methanol were HPLC grade, 
purchased from Merck (Darmstadt, Germany) and 
used without further purification.

MIP synthesis
The MIPS were synthesized in two molecular 

ratios of 1:4:20 and 1:6:30 (template: functional 
monomer: cross-linker) as follows: First, for the 
synthesis of 1:4:20 polymer, 0.182 g (0.798 mmol) 
of BPA (template) and 0.35 ml (3.192 mmol) of 
MAA (functional monomer) were dissolved in 15 
ml of the porogen acetone. The solution was stirred 
for 10 min. Then, 3 ml (15.96 mmol) of EGDMA 
as cross-linker and 50 mg (0.304 mmol) of AIBN 
as initiator were added to the previous solution. 
The pre-polymerization solution was sonicated 
for 10 min at room temperature and purged with 
nitrogen for 15 min in ice-bath to remove dissolved 
oxygen. The reaction was performed at 60 °C in 
a water bath for 24 h to achieve a solid polymer. 
For the synthesis of 1:6:30 polymer, the amounts 
of functional monomer and cross-linker were 6 
and 30 folds of template amount, respectively. 
Non-imprinted polymers (NIPs) were synthesized 
exactly by the similar procedure of MIPs without 
bisphenol A [26].

Template removal from MIPs
To remove the template, the prepared polymers 

were transferred into a flask containing methanol/
acetic acid (9:1 V/V) and the solution was 
continuously stirred with a magnetic stirrer during 
the extraction. The extraction was continued until 
the absorbance of the filtered solution at 278 nm 
reached to zero. Then, the template -free MIPs have 
separated from the solution by centrifuge 10000 
rpm, washed with distilled water, and dried at oven 
at 50 °C overnight. For NIPs, Soxhlet extraction 
was omitted. 
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Preparation of BPA calibration plot
To prepare the BPA calibration plot, different 

concentrations of BPA were made in the 
acetonitrile solvent. The absorption of the samples 
was measured at a wavelength of 278 nm and the 
standard absorption plot and the corresponding 
equation were obtained. The achieved calibration 
plot is shown in Fig. 1.

Characterization of MIPs and NIPs
The scanning electron microscope (SEM) 

(TESCAN, VEGALL, Czech) was used for the 
estimation of the shape and surface morphology 
of the polymers. Polymeric particles were sputter-
coated with gold before the SEM measurement. 
Nitrogen adsorption-desorption measurements 
were performed based on adsorption or desorption 
of nitrogen on or from polymer surface at 77K using 
BELSORP measuring instruments (Bel, Belsorp-
miniII, Japan). Before measurement, the polymers 
were heated at 120 °C for 2 h. Standard Brunauer-
Emmett-Teller (BET) and Barrett-Joyner-Halenda 
(BJH) were used for calculation of specific surface 
area, pore-volume, and average pore diameter. 
Fourier transform infrared spectra (4000 – 400 
cm1) of MIPs and NIPs particles were recorded on 
a Bruker spectrometer (Perkin Elmer, USA).

Binding studies 
Binding affinity of the imprinted and non-

imprinted polymers was evaluated using a static 
adsorption experiment by separately mixing 
of 30 mg of polymer particles with various 
concentrations of BPA (0.1-2.5 mmol/L) in 
acetonitrile (CAN). The solution was shaken at 250 
rpm for 3h at room temperature. After binding, the 
polymer particles were separated by centrifugation 

at 15000 rpm for 30 min. The free concentrations 
of BPA were determined by absorption at 278 nm. 
The adsorption capacity of MIPs and NIPs were 
determined by Equation (1) [27]:

( )0 fC C v
Q

m
−

=    � (1)

where C0 (mmol/L) and Cf (mmol/L) are the 
initial and final concentrations of BPA, v  (L) is 
the volume of solution, m(g) is the mass of the 
polymer, Q (µmol/g) is the amount of BPA. The 
removal efficiency was also calculated according to 
the following equation:

( ) 0

0

  % 100eC CRemoval efficiency
C
−

= ×   (2)

where, eC  is the equilibrium concentrations of 
BPA (mmol/L).

In dynamic adsorption experiments to study 
the reaction kinetics, 30 mg of MIP particles were 
mixed with 15 mL of acetonitrile solution with 
different concentrations of BPA (0.1-2.5 mmol/L). 
The solution was shaken at 250 rpm. The samples 
were taken from the solution at an interval of 30 
min and the unbound BPA was measured by a UV-
visible spectrophotometer at 278 nm. 

The imprinting factor which shows the 
diagnostic characterization of MIPs and NIPs to 
the template molecules was determined according 
to Equation (3):

MIP

NIP

QIF
Q

=      �  (3)

 
Fig. 1: Standard absorption plot for BPA 
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Fig. 1: Standard absorption plot for BPA
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Isotherm study
Experimental data were fitted to the Langmuir,  

Freundlich, and Scatchard models for the deter-
mination of the isotherm parameters. Langmuir 
adsorption model assumes that each fixed number 
of homogenous sites can only adsorb on the 
molecule of the samples [28]. The Langmuir model 
can be applied as below:

1
max e

e
e

Q bCQ
bC

=
+

  �    (4)

where, Ce (mmol/L) is the equilibrium 
concentration of the BPA, eQ  (mmol/g) is 
the amount BPA per unit mass of adsorbent at 
equilibrium concentration, maxQ  (mmol/g) is the 
maximum adsorption capacity, b is the adsorption 
equilibrium constant.

The non-homogenous and reversible 
adsorption of BPA on adsorbent can be described 
by Freundlich isotherm as Equation (5):

1/n
e F eQ k C=      �   (5)

Where, n and FK  (mmol/g) are Freundlich 
constants.

The Scatchard plot analysis is applied to obtain 
further knowledge on the affinity of binding sites 
[29]. The experimental data were analyzed using 
the Scatchard equation as below:

)(e
max e d

e

Q Q Q K
C

= −     �   (6)

where, dK  is the dissociation constant.

Kinetic study
Most of the adsorption process is related to 

time. Kinetic models describe the adsorption rate 
of adsorbate and its dependency on time. Kinetic 
models of pseudo-first order and pseudo-second-
order were used to investigate BPA adsorption onto 
synthesized polymers. 

The pseudo-first-order equation is stated in the 
linear form as below:

( ) 1ln e t eq q lnq K t− = −   �        (7)

  

MIP-6  MIP-4 

  

NIP-6 NIP-4 

Fig. 2: SEM images of MIPs and NIPs 

  

Fig. 2: SEM images of MIPs and NIPs
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where, qe  and qt  are the amount of BPA adsorbed 
(mg/g) on the adsorbent at the equilibrium and at 
time t, respectively, and K1 (1/min) is the rate of 
constant adsorption.

The (qe) and (K1) parameters can be calculated 
from the slope and intercept of the plot of Ln(qe-qt) 
versus time. The pseudo-second-order equation is 
expressed as follow:

2
2

1 1

t e e

t t
q k q q

= +       � (8)

where, k2 is the rate constant of pseudo-second-
order equation (µmol/mg min).

RESULT AND DISCUSSION 
Characterization studies

Fig. 2 shows the surface morphology of MIPs 
and NIPs. Nanometer and spherical particles were 
achieved by precipitation polymerization. Since the 

addition of template to polymerization solution 
causes cavities formation in polymer network [30], 
the NIPs showed fairly regular and smooth surface 
rather than MIPs. Thus, the MIPs had a porous 
surface compared to NIPs due to the presence of 
BPA.

The FT-IR spectra of synthesized MIPs and NIPs 
are shown in Fig. 3. Similar characteristic peaks 
confirmed similarity in the structure of polymers. 
However, there are obvious differences between 
the IR spectra of the MIPs and NIPs. Absorption 
peaks at 3400 to 3500 cm-1 is related to stretching 
vibration of O-H. Bonds at 1730 cm-1 are linked to 
the stretching vibration of C=O of –COOH group 
of MAA. Furthermore, absorption peaks at 1380 to 
1400 cm-1 and 1460 cm-1 are related to the bending 
vibration of CH3 and CH2 groups, respectively. The 
peak at 1640 cm-1 corresponded to the stretching 
vibration of C=C bonds.

The porosities of produced MIPs and NIPs were 

 
Fig. 3: FTIRs of (a) MIP-4, (b) MIP-6, (c) NIP-4 and (d) NIP-6 

  

Fig. 3: FTIRs of (a) MIP-4, (b) MIP-6, (c) NIP-4 and (d) NIP-6
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evaluated by the nitrogen adsorption-desorption 
experiment (Fig. 4). The results of the BET analysis 
are shown in Table 1. Pore volume, specific surface 
area, and average pore diameter of the MIPs are 
compared with the NIPs. Since the pore diameter 
of synthesized polymers is in the range of 2 to 50 
nm, they are placed in the mesoporous category. 
The specific surface area of MIPs is larger than 
that of the corresponding NIPs, which may result 
due to the presence of cavities on MIPs. This may 
be owing to the presence template molecule, such 
that after its removal from the polymer, it left 
particles of the MIP with a higher surface area. 
It indicates the higher accessibility of imprinted 
cavities and so higher adsorption capacity of 
MIPs to BPA than that of the corresponding NIP 
due to imprinting effect. Moreover, a decrease in 
particle size increased their specific surface area 

and pore volume. In Fig. 4, at low relative pressure 
(P/P0), the amount of adsorption increased with a 
uniform gradient which is related to the adsorption 
of nitrogen molecules on the internal surface of 
the mesoporous polymer. As this ratio of (P/P0) 
increased, the adsorption increased rapidly due 
to the filling of mesoporous polymer with gas 
molecules and their density on the surface.

The adsorption capacity of MIPs and NIPs and 
isotherm models

Fig. 5 shows the effect of various initial 
concentrations of BPA (0.1 to 2.5 mmol/L) onto the 
adsorption capacity and removal efficiency of MIPs 
and NIPs. The adsorption capacity (amount of BPA 
adsorbed per unit mass of polymers) increased 
with an increase in the initial concentration of 
BPA. At low concentrations, most of the active sites 

  

  
Fig. 4: Nitrogen adsorption-desorption isotherm of (a) MIP-4, (b) MIP-6, (c) NIP-4 and (d) NIP-6. (The BJH plot 

are given in inset) 
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are given in inset) 
  

Fig. 4: Nitrogen adsorption-desorption isotherm of (a) MIP-4, (b) MIP-6, (c) NIP-4 and (d) NIP-6. (The BJH plot are given in inset)
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remained unsaturated and the binding capacity 
was low. However, an increase in the initial 
concentration of BPA resulted in mass transfer 
enhancement and adsorption capacity. As shown 
in Fig. 5, MIPs polymer has a greater binding 
capacity than that of NIPs. The highest binding 
capacity was obtained for MIP-6 with a value of 
183 µmol/g. Also, due to the reduction in active 
sites of adsorbent because of increasing in BPA 
concentration, the removal efficiency decreased.

Langmuir, Freundlich, and Scatchard isotherm 
models were used to evaluate the interaction 

 
  

 

    
    
    
    

 

Table 1. Results of BET analysis for polymers

 

 
Fig. 5: The effect of initial concentrations of BPA onto (a) adsorption capacity and (b) removal efficiency of MIPs 

and NIPs 
  

0

50

100

150

200

0 1 2 3

Q
e

(µ
m

ol
/g

)

C0 (mmol/L)

MIP-6
NIP-6
MIP-4
NIP-4

(a)

0

10

20

30

40

50

60

70

80

0.1 0.5 1 1.5 2 2.5

R
 (%

)

C0 (mmol/L)

MIP-6 NIP-6 MIP-4 NIP-4

Fig. 5: The effect of initial concentrations of BPA onto (a) adsorption capacity and (b) removal efficiency of MIPs and NIPs

  

  
 

Fig. 6: Langmuir adsorption isotherm of BPA onto polymers 
  

Fig. 6: Langmuir adsorption isotherm of BPA onto polymers

between BPA molecules and synthesized polymers. 
Fig. 6 and Table 2 show the Langmuir isotherm 
plots and model constants, respectively. The results 
indicated that the Langmuir model is a suitable 
isotherm for interpreting the adsorption data 
obtained for adsorption of BPA onto polymers 
due to high correlation coefficients. The maximum 
adsorption capacity achieved for MIP-6 (400.1 
µmol/g) was higher than that obtained for MIP-4 
(245.5 µmol/g).

Freundlich isotherm plot is shown in Fig. 7. 
The constants and correlation coefficient (R2) are 
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Table 2: Isotherm parameters for BPA adsorption

 

 
 

  

  
 

Fig. 7: Freundlich adsorption isotherm of BPA onto polymers 
  

Fig. 7: Freundlich adsorption isotherm of BPA onto polymers

 

 

 

 
Fig. 8: Scatchard plot analysis of the BPA binding onto the polymers 
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Fig. 8: Scatchard plot analysis of the BPA binding onto the polymers
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illustrated in Table 2. Results show that adsorption 
data were in good agreement with Freundlich 
isotherm with high correlation coefficients. The n 
values obtained for MIPs and NIPs were between 
1 to 10 indicating good surface adsorption and 

suitability of the adsorption of BPA onto the 
polymers. The constant value of b and KF obtained 
for MIPs is smaller than that of NIPs which showed 
that BPA had more affinity to synthesized MIPs 
compared to NIPs.

 

 

Table 3. Scatchard parameters for MIPs

 

 
 

 
 

 

 
 

 
 

 

 
 

 
 Fig. 9: Pseudo-first-order plot of BPA onto MIPs and NIPs

 
Fig. 9: Pseudo-first-order plot of BPA onto MIPs and NIPs 

  
Fig. 10: Pseudo-second-order plot of BPA onto MIPs and NIPs
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Table 4. Kinetic parameters for BPA adsorption

The Scatchard analysis curves of MIPs and 
NIPs are illustrated in Fig. 8. As shown in Fig. 8, 
the nonlinear relationship between Qe/Ce and Qe 
was achieved. It indicated that the interaction sites 
between the template molecules and the functional 
monomers were not uniform during the synthesis 
of the MIPs for both high (left portion of the Fig.8) 
and low (right portion of the Fig.8)-affinity binding 
sites. Besides, all template molecule bonds did not 
participate in the polymerization reaction. The 
obtained result for Ka and Qmax is shown in Table 
3.  For NIP-6 and NIP-4, the Ka was calculated to 
be 357.14 and 416.66 µmol/L, respectively and the 
corresponding value of Qmax was 70.36 and 67.165 
µmol/g, respectively.

Adsorption kinetics
Figs. 9 and 10 show the pseudo-first-order and 

pseudo-second-order plots for BPA adsorption 
onto polymers, respectively. Kinetic parameters are 
presented in Table 4. As seen in Table 4, the higher 
regression coefficients (R2) were obtained for data 
fitting to the first-order kinetic model for NIPs and 
MIPs. Besides, the calculated adsorption capacity 
(qeq,cal) achieved from the pseudo-first-order model 
agreed with the experimental adsorption capacity 
(qe,exp). Thus, the pseudo-first-order model could 
describe the adsorption of BPA onto synthesized 
NIPs and MIPs well. On the other hand, the binding 
kinetics obtained for MIPs are improved because 
of higher surface-area-to-volume ratios and more 

α  α   
   
   
   
   
   
   

Table 5. Imprinting factor for synthesized polymers at various BPA concentrations
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accessibility of imprinted cavities by BPA.

Imprinting factor
The imprinting factors for synthesized polymers 

with two molecular ratios of 1:4:20 and 1:6:30 
polymers are presented in Table 5. The imprinting 
factor at high BPA concentrations increased in 
contrast to low BPA concentrations. 

CONCLUSION
In this work, nano-sized MIPs were synthesized 

by precipitation polymerization, allowing BPA 
removal from water solution. The produced 
nanoparticles have a high surface-area-to-volume 
ratio; consequently, binding performance is 
suitable due to easier access of imprinted pores 
by the template. The effect of various factors such 
as the amount of the molecular ratio of template: 
functional monomer: cross-linker and initial 
concentrations of BPA onto adsorption capacity 
and removal efficiency of MIPs and NIPs were 
evaluated. The 1:6:30 ratio showed better removal 
of BPA rather than a 1:4:20 ratio. Moreover, the 
results indicated the nano-spherical morphology 
of MIPs. The adsorption isotherm and kinetic 
models were used to determine the mechanism and 
binding properties of polymers. The adsorption 
kinetics were in good agreement with the pseudo-
first-order model. The results depicted that the 
synthesized MIP could be considered as an 
appropriate adsorbent for BPA removal. 
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