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ABSTRACT
Even at low levels, heavy metals are toxic and can damage living things. They do not break down or 
decompose and tend to build up in plants, animals, and people causing health concerns. Magnetic 
nanoparticles (MNPs) can be considered as potential adsorbents for the removal of cadmium (Cd2+) 
from aqueous solutions because of their high surface area and the combined effect of adsorption 
and separation under external magnetic fields. In this study, a novel sulfur-modified magnetic 
nanoparticle was applied as an adsorbent for the removal of Cd2+ ions from aqueous solutions. The 
adsorbent was characterized by scanning electron microscopy (SEM), Fourier transform-infrared 
(FT-IR) spectroscopy, and thermogravimetric analysis (TGA). The effects of pH, contact time, and 
initial concentration of Cd2+ on the removal efficiency of it were investigated in batch adsorption 
experiments. The equilibrium data fitted the Langmuir isotherm model better than the Freundlich 
isotherm model, and they were well explained in terms of pseudo-second-order kinetics. The 
maximum monolayer capacity qm and KL the Langmuir constant were calculated from the Langmuir 
as 5.1867 mg/g and 0.1562 L/mg, respectively.
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INTRODUCTION
Heavy metals are metallic elements with high 

atomic weights, such as mercury, chromium, 
cadmium, arsenic, lead, etc. Even at low levels these 
metals are toxic and can damage living things. 
They do not break down or decompose and tend 
to build up in plants, animals, and people causing 
health concerns [1, 2]. Depending on the metal, its 
concentration, route of exposure, as well as the age, 
genetics, and nutritional status of exposed targets, 
heavy metals can have a variety of environmental 
and health concerns [2, 3].

Cadmium (Cd2+) is extensively applied in 

batteries (nickel-cadmium batteries), pigments, 
alloys, phosphate fertilizers and metal plating [4-6]. 
Galvanized pipes, discharge from metal refineries, 
the ash combustion of fossil fuels, runoff from 
waste batteries and paints can be the major sources 
of exposure of Cd2+ in water [6, 7]. Kidney damage, 
stomach problem, diarrhoea and sometimes death 
are adverse health effects that have been observed in 
human beings by ingestion of Cd2+. Accumulation 
of Cd2+ in body impacts different organs such as 
liver, lungs, intestines, placenta, and pancreas [6, 
8-9]. High exposure of human populations to Cd2+ 

and excessive intake of Cd2+ causes serious illnesses 
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such as itai-itai disease [6, 10] and impacts the 
reproductive hormone levels [6, 8, 11]. Maximum 
contamination levels (MCLs) for Cd2+ in air, sludge 
(soil), drinking water and supporting aquatic 
life regulated by United States Environmental 
Protection Agency (U.S. EPA) are 0.1-0.2 (mg/
m3), 85 (mg/ kg), 0.005 (mg/L) and 0.008 (mg/l), 
respectively [2, 12]. The permissible Cd2+ 
concentration as per World Health Organization 
(WHO) guidelines in drinking water is 0.003 mg/L 
[6, 7]. Thus, it is essential to take considerable effort 
for developing effective treatment techniques for 
removal of Cd2+ ions from wastewater before its 
discharge into the near water bodies [13].

Precipitation, floatation, ion exchange, membrane 
processes (e.g. ultrafiltration, reverse osmosis), 
solvent extraction, coagulation, flocculation, 
electrodialysis, electrochemical reduction, 
phytoextraction, biological processes, ionization, 
and adsorption are various techniques which have 
been applied for the removal of Cd2+ from aqueous 
solutions. Most of them have their own drawbacks 
because of high operating cost, sludge generation 
and laborious techniques [13, 14]. Among these 
applied techniques, adsorption can be considered 
most effective and suitable for Cd2+ removal [13, 
15]. In real, adsorption can be usually considered as 
one of the most frequently applied and promising 
technologies due to its low cost, easy operation, high 
efficiency, the simplicity of the equipment and easy 
regeneration [6, 14, 16, 17]. Since the performance 
of an adsorptive separation is directly rely on the 
quality and cost-effectiveness of the adsorbent, in the 
recent years, there has been a continuous interest in 
the development of effective noble adsorbents with 
high surface areas and more binding sites [14, 18].

Magnetic nanoparticles (MNPs) can be 
considered as potential adsorbents for the removal 
of Cd2+ from aqueous solutions because of their high 
surface area and the combined effect of adsorption 
and separation under external magnetic fields. 
Because iron-based materials are inexpensive and 
environmentally friendly, therefore, they can be 
mostly interesting [6, 19, 20]. These iron-based 
nanomaterials can be synthesized by microwave 
assisted irradiation of iron, pulsed current and 
chemical methods [6, 20-23]. Due to the importance 
and very wide utilization of MNPs, some researchers 
recently reviewed their synthesis methods and 
applications in several scientific fields [6, 24-26].

MNPs have widely been applied as new 
adsorbents with a large surface area for the 

separation and removal of metals such as Cd2+ 
from aqueous solutions. Huang et al. applied 
γ-mercaptopropyltrimethoxysilane (γ- MPTMS)-
modified silica-coated MNPs as solid phase 
extraction (SPE) adsorbent for separating and 
concentrating trace amounts of Cd, Cu, Hg, 
and Pb before analysis by inductively coupled 
plasma-mass spectrometry (ICP–MS). The 
modified nanoparticles are highly monodisperse, 
magnetically separable, and provide high 
adsorptive capacities; they can rapidly and 
quantitatively adsorb Cd, Cu, Hg, and Pb from 250 
mL aqueous solution in 10 min [24, 27]. Faraji et al. 
investigated the application of decanoic acid coated 
Fe3O4 nanoparticles as an adsorbent for solid phase 
extraction and determination of trace amounts of 
Cd, Co, Cr, Ni, Pb and Zn from environmental water 
samples using flow injection inductively coupled 
plasma-optical emission spectrometry (ICP-OES). 
Under the optimized conditions, detection limits 
for Cd, Co, Cr, Ni, Pb, and Zn were reported to 
be 0.3, 0.7, 0.5, 0.6, 0.8 and 0.2 µg/L, respectively 
[23]. Gupta and Nayak modified an agricultural 
waste-orange peel powder (OPP) into a novel 
magnetic nano-adsorbent (MNP–OPP) by co-
precipitating it with Fe3O4 nanoparticles (MNP) for 
Cd2+ ion removal from aqueous solutions. Results 
demonstrated a faster kinetics and efficiency of 
MNP–OPP in comparison to those of MNP and 
OPP and further confirmed a complexation and 
ion exchange mechanism to be operative in metal 
binding. Cd2+ removal was achieved at 82% from a 
simulated electroplating industry wastewater [18]. 
Singh et al. synthesized citric acid coated magnetite 
nanoparticles (Fe3O4-Cit) for the removal of Cd2+ 
from aqueous solutions and reported that the 
experimental data could be suitable linearity with 
Langmuir isotherm having maximum adsorption 
capacity (qm) values in mg/g 10.81, 11.45 and 12.56 
at the 298 K, 303K and 308 K, respectively [13]. Shan 
et al. studied the adsorption kinetic, isothermal, 
thermodynamic and mechanistic properties of 
Cd2+ in an aqueous solution containing Mg-Al–
CO3- and magnetic Fe3O4/Mg–Al–CO3-layered 
double hydroxide (LDH) and reported that the 
adsorption kinetics and isotherm data followed 
the pseudo-second-order model and the Langmuir 
equation, respectively. The adsorption process 
of Cd2+ reported being feasible, spontaneous 
and endothermic in nature [14]. Huang et al. 
synthesized magnetic nanoparticle adsorbents, 
namely Mag-PCMA-T, which contain a maghemite 
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core and a silica mesoporous layer that permanently 
confines surfactant micelles within the mesopores, 
to achieve simultaneous removal of polycyclic 
aromatic hydrocarbons (PAHs) (1 mg/L) and metal 
contaminants (1 mg/L). They reported that Mag-
PCMA-T removed >85% of the acenaphthene in 
<30 min, with relatively high sorption capacity 
(up to 1060 mg/kg). Mag-PCMA-T also exhibited 
high sorption capacity for Cd2+ (up to 2250 mg/
kg). The simultaneous sorption performance was 
stable across a wide pH range (4–9) as well as in the 
presence of competitive metal ions (Cd2+ and Mg2+) 
or natural organic matters [28]. Chen et al. prepared 
a novel composite of carbon disulfide-modified 
magnetic ion-imprinted chitosan-Fe(III), i.e., 
MMIC-Fe(III) composite, as an efficient adsorbent 
for the simultaneous removal of tetracycline (TC) 
and Cd2+. They mentioned that the adsorption 
proceeded according to a pseudo-second-order 
model and the adsorption isotherms were well 
described by the Langmuir model, with maximum 
adsorption capacity for TC and Cd2+ being 516.29 
and 194.31 mg/g, respectively. They concluded that 
the synergistic effect of TC and Cd2+ adsorption 
might be due to the formation of TC- Cd2+ complex 
bridging the adsorbate and adsorbent [29].

Li et al. [30] studied a novel magnetic 
polydopamine (PDA)–LDH (MPL) bifunctional 
material, that was synthesized by an easy and 
green method for the simultaneous removal of 
potentially toxic metals and anionic dyes and 
concluded that the MPL assemblies had practical 
utilization potential for integrative and efficient 
treatment of coexisting toxic pollutants [30]. 
Beyki et al. [31] investigated the green synthesis of 
Fe3O4 nanoparticles as a magnetic core to prepare 
poly 1, 4 phenylenediamine nanocomposite and 
used this magnetic polymer nanocomposite as an 
adsorbent in the removal of Pb2+ ions and Direct 
red 81 (DR-81) from single and binary solutions. 
The maximum capacity of this nanocomposite was 
reported to be 144.92 and 370.37 mg/g for DR-81 
and Pb2+, respectively [31].

In this study, a novel sulfur-modified magnetic 
nanoparticle was synthesized as an adsorbent 
for the removal of Cd2+ ions from aqueous 
solutions. The novel adsorbent was characterized 
by scanning electron microscopy (SEM), Fourier 
transform-infrared (FT-IR) spectroscopy, and 
thermogravimetric analysis (TGA). The batch 
adsorption study was performed on the synthesized 
adsorbent to investigate the effect of pH, contact 

time, and initial concentration of Cd2+ on the 
removal efficiency and the adsorption capacity for 
cadmium uptake. Also, the kinetics and adsorption 
isotherms were investigated.

MATERIAL AND METHODS
Materials and reagents

All chemicals and reagents used were of 
analytical grade without any further purification. 
Isopropylamine ((CH3)2CHNH2), carbon disulfide 
(CS2), 3-(Chloropropyl)-trimethoxysilane (Cl(CH2)3  
Si(OCH3)3), cadmium nitrate tetrahydrate 
(Cd(NO3)2.4H2O), toluene (C6H5CH3), methanol 
(CH3OH), ethanol (C2H5OH), sodium hydroxide 
(NaOH) and hydrochloric acid (HCl) were 
purchased from the Merck (Darmstadt, Germany). 
Fe3O4 nanoparticles were of laboratory grade and 
were prepared by a chemical co-precipitation 
method [32]. Double-distilled deionized water was 
applied to preparing solutions.

Preparation of the adsorbent
For the preparation of new adsorbent, the 

magnetic Fe3O4 nanoparticles firstly functionalized 
by 3-(Chloropropyl)-trimethoxysilane. Briefly, 10.0 
g of Fe3O4 nanoparticles were mixed with 6.5 mL 
of 3-(Chloropropyl)-trimethoxysilane and 50.0 mL 
of toluene. After 24 h, the mixture was filtered and 
washed three times with 20.0 mL toluene and two 
times with 20 mL ethanol; afterward, it was dried 
at vacuum oven under conditions of 50 °C for 12 
h (Fig. 1A). Next step is a sulfur modification of 
the mixture. In real, the sulfur groups have a strong 
affinity binding for most heavy metals [29]. For 
this purpose, 5.0 mL carbon disulfide was slowly 
added to 1.64 mL isopropylamine under mild heat 
condition to form a white precipitated (Fig. 1B). 
Then, 0.54 g of this sulfur compound was dissolved 
in 10.0 mL methanol and afterward 0.2 g of the 
magnetic Fe3O4 nanoparticles functionalized by 
3-(Chloropropyl)-trimethoxysilane were added to 
it and kept at 65.0 °C for 24 h (condenser condition). 
The final products were obtained after filtering and 
drying at 50.0 °C in a vacuum oven for one hour 
(Fig. 1C) and are hereafter referred as sulfur-
modified magnetic nanoparticles (SM-MNPs). The 
chemical structure of synthesized novel adsorbent 
is shown in Fig. 2.

Characterization of the adsorbent
The morphology and surface structure of the 

adsorbents were studied using scanning electron 
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microscopy (SEM) (Model S-360, Cambridge 
Instruments Ltd.). The surface functional 
groups of samples were determined by Fourier 
transform-infrared (FT-IR) (Bruker Vector 33 
FT-IR, Germany). Thermal stability of MNPs 
was studied by a Rheometric Scientific STA 1500 
thermogravimetric analysis (TGA) instrument at a 
heating rate of 20 °C/min in the temperature range 
of 25–700 °C under nitrogen atmosphere.

Adsorption procedure
The cadmium stock solution was prepared 

by dissolving cadmium nitrate tetrahydrate 
(Cd(NO3)2·4H2O) in distilled water and then 
diluting with distilled water to a specific 
concentration. Adsorption processes for all 
experiments were conducted in a 15 mL falcon 
tube containing 0.05 g of the adsorbent and 15 mL 
of cadmium solution with certain concentration 
and pH, which was shaken at room temperature for 
a given time. The pH of the cadmium solution was 
adjusted to the appropriate value with 0.1 mol/L 
HCl and NaOH. After adsorption, the suspensions 
of the adsorbent and Cd2+ in an aqueous solution 
were separated using a permanent magnet. The 

residual Cd2+ concentrations in the supernatant 
clear solutions were determined by Varian atomic 
absorption spectrometer using a calibration curve 
(accuracy and precision with < 2% error). In real, 
the effects of the pH, contact time, and initial 
concentration of cadmium on removal efficiency 
were studied. The effect of pH on the sorption of 
the adsorbent toward Cd2+ was determined by 
mixing 0.05 g adsorbent with 15 mL of a solution 
containing Cd2+ (1 mg/L) at various initial pH 
levels (2, 3, 4, 5, and 6).

Then, the kinetics and adsorption isotherms were 
investigated. For the kinetics study experiment, 
0.05 g of the adsorbent was added to 15 mL of a 
solution with the initial concentrations of Cd2+ 
adjusted to 1 mg/L. The mixture was shaken. 
Samples were withdrawn at different time intervals 
(5, 10, 20, 30, 40 and 60) and analyzed for the 
residual concentrations. The adsorption isotherm 
study was established for the adsorbent (0.05 g) 
in the 15 mL of cadmium solution with different 
initial concentrations of Cd2+ (5, 10, 20, 30, 40, and 
50 mg/L) at optimal contact time. The pH of the 
solution in kinetics and sorption isotherm studies 
were adjusted to the optimal pH obtained in the 
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Fig. 1. Novel adsorbent synthesis steps: (A) the magnetic Fe3O4 nanoparticles functionalized by 3-(Chloropropyl)-trimethoxysilane, 
(B) the product of reaction of carbon disulfide and isopropylamine, and (C) the synthesized final adsorbent.
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Fig. 2. The chemical structure of the synthesized novel adsorbent.
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pH effects study. Other procedures were the same 
as those described in the experiment on pH effect. 
All the adsorption experiments were carried out at 
ambient temperature (22-25 ◦C).

The removal efficiency (E) and the adsorption 
capacity for cadmium uptake, qe (mg/g), were 
determined as follows:
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where C0 (mg/L) is the initial concentration of 
Cd2+, C (mg/L) denotes the final concentrations 
of Cd2+, m (g) is the mass of adsorbent, and V(L) 
denotes the volume of adsorbate (Cd2+) solution.

Adsorption model fitting
The equilibrium adsorption of Cd2+ ion was 

evaluated according to Langmuir and Freundlich 
isotherms by Eqs. (3) and (4), respectively [28, 33]:
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where Ce is Cd2+ concentration (mg/L) at 
equilibrium and qe is amount adsorbed (mg/g), 
qm is the maximum sorption capacity (mg/g). KL 
(L/mg) and KF (mg/g)/(L/mg)−n are the Langmuir 
and Freundlich sorption equilibrium constants, 
respectively. The Langmuir model is suitable for 
monolayer adsorption on a surface, whereas, 
Freundlich model is used on the basis of premising 

that stronger binding sites are occupied first [16].
Kinetics were analyzed using the pseudo-

second-order model as presented in Eq.(5) [13, 14, 
28, 31]:
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 where qt and qe (mg/g) are the amounts adsorbed 
at time t (min) and equilibrium, respectively, and 
k [g/(mg.min)] is the rate constant of pseudo-
second-order model.

RESULT AND DISCUSSION
Characterization of the adsorbent

SEM micrograph of the adsorbent depicts the 
morphological characteristics favorable for metal 
adsorption. Fig. 3 shows a spherical morphology of 
the adsorbent (slightly agglomerated) with a mean 
particle size of 100 nm.

The functional groups and surface properties of 
the adsorbent were confirmed by the FT-IR spectra. 
Fig. 4 shows FT-IR spectra of (A) the magnetic Fe3O4 
nanoparticles functionalized by 3-(Chloropropyl)-
trimethoxysilane, (B) the product of the reaction of 
carbon disulfide and isopropylamine, and (C) the 
synthesized final adsorbent. In the FT-IR spectrum 
of the magnetic Fe3O4 nanoparticles functionalized 
by 3-(Chloropropyl)-trimethoxysilane (Fig. 4A), 
the bond at 1399 cm-1 is related to C-Cl asymmetric 
stretching vibrations, and the peaks observed at 
3045, 3143, 2807, 593, 1055, and 1623 cm-1 could 
be assigned to the Si-O-H, asymmetric stretching 
vibrations of the C-H, Si-O, Si-O-Si vibrations, 
and O-H bending vibrations, respectively. In the 
FT-IR spectrum of the product of the reaction of 
carbon disulfide and isopropylamine (Fig. 4B), the 

 

 
 

Fig. 3 
 
 
 
 
 
 
 
 
 

Fig. 3. SEM image of the adsorbent.
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bonds at 1486 and 2582 cm-1 are related to C-N 
and S-H vibrations, respectively, and the peaks at 
3305 and 1162 cm-1 could be assigned to the N-H 
deformation vibrations. In the FT-IR spectrum 
of the synthesized final adsorbent (Fig. 4C), the 
peaks observed at 2972, 1556, and 596 cm-1 could 

be assigned to the asymmetric stretching vibrations 
of the C-H, C-N, and Si-O vibrations, respectively. 
Also, C-Cl vibrations were disappeared on the 
synthesized final adsorbent. This may be evidence 
that the adsorbent was successfully modified and 
functionalized.

 
 

Fig. 4 
 

Fig. 4. FT-IR spectra of (A) the magnetic Fe3O4 nanoparticles functionalized by 3-(Chloropropyl)-trimethoxysilane, (B) the product 
of reaction of carbon disulfide and isopropylamine, and (C) the synthesized final adsorbent.
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Fig. 5 show TGA graph of the adsorbent. TGA 
curve of the adsorbent depicts that the weight loss 
over the temperature 25 to 200 °C is about 6%. 
This might be because of the loss of residual water 
(physical and chemical water) in the sample. Then 
the principal chains of polymer begin to decompose 
at about 200 °C and the final temperature of 
degradation is around 300 °C. Here, the weight loss 
is 40%. At higher temperature (300 to 600°C), there 
is no significant change of weight. This implies that 
there are only Fe3O4 nanoparticles at this range 
of temperature and the presence of functional 
groups in/on the adsorbent are confirmed by TGA. 
This result is compatible with those of the other 
researches [28, 34].

Effect of operating conditions on the adsorption of Cd2+

The operating parameters such as initial solution 
pH, contact time, metal ion concentration and other 
parameters can affect the surface characteristics of the 
adsorbent surface and its metal binding capacity [18]. 
Thus, a batch adsorption study was performed on the 
synthesized adsorbent to investigate the effect of these 
operating parameters on the removal efficiency and 
the adsorption capacity for cadmium uptake.

Effect of pH
Fig. 6 shows the initial solution pH dependency 

of Cd2+ ion removal from aqueous solutions by the 
adsorbent. The adsorption capacity was low at lower 
pH values (for example 60.0% at pH=3). It seems that 
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Fig. 5. Thermogravimetric analysis (TGA) of the adsorbent.
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Fig. 6. The effect of initial solution pH on the removal efficiency of Cd2+ by the adsorbent.
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the positive charge on the adsorbent is generated in 
the acidic pH (low pH). So, there is an electrostatic 
repulsion between the adsorbent and Cd2+ ions in 
solution. The hydrogen ions instead of cadmium ions 
are placed into the adsorbent sites when the amount 
of hydrogen ions increases in solution, and so the 
removal efficiency is low [35]. The removal efficiency 
of Cd2+ was increased with increasing pH from 60.0% 
to 92.0% in the pH range of 3–5 and then appeared to 
decrease at higher pH values. Therefore, the optimum 
pH was 5 for the removal of Cd2+ from the aqueous 
solution. The increase in the Cd2+ adsorption on 
the adsorbent with increasing pH may be attributed 
to the surface charge and the availability of binding 
sites presented at the adsorbent surface [14, 36, 37]. 
The obtained results of the present study are in line 
with the previous research findings [18, 35] and this 
pH strong dependency of the Cd2+ adsorption on the 
adsorbent was seen in Zhao et al. work [37].

Effect of contact time
Fig. 7. shows the effect of contact time on the 

removal efficiency of Cd2+ by the adsorbent. The 

study of the removal efficiency of Cd2+ by the 
adsorbent revealed that the adsorption capacity 
of it enhanced with contact time up to 10 min and 
after that, the removal efficiency was approximately 
constant. For this reason, the optimum contact 
time was selected as 10 min. According to Fig. 7, 
with increasing contact time, Cd2+ ion removal 
efficiency increases, because Cd2+ ions have more 
opportunities for contact with the adsorbent 
surface when time enhances. The rate of Cd2+ ions 
removal was fast in the beginning times (first 10 
min) due to the larger surface area of the adsorbent 
available [35]. As time increases to 60 min, there 
are no big changes in removal efficiency (very 
slightly decrease) due to the saturation of binding 
sites presented at the adsorbent surface.

Effect of initial concentration of Cd2+

The effect of initial Cd2+ concentration on the 
removal efficiency of Cd2+ by the adsorbent is shown 
in Fig. 8. According to Fig. 8, with increasing Cd2+ 
concentration of 5–30 mg/L, the removal efficiency 
is increased from 70 to 86 %; and then appeared to 
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Fig. 8. The effect of initial Cd2+ concentration on the removal efficiency of Cd2+ by the adsorbent.

Fig. 7. The effect of contact time on the removal efficiency of Cd2+ by the adsorbent.
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decrease at higher initial Cd2+ concentration values.
An enhanced ratio of an initial number of Cd2+ 

ions to the available surface area resulted in high 
concentration; hence fractional adsorption relies 
on initial concentration. For a given amount of the 
adsorbent (0.05 g of the adsorbent) the total number 
of available adsorption active sites is constant 
thereby adsorbing almost the same amount of Cd2+, 
therefore, a decrease in the removal of Cd2+ resulted 
in an increase in initial concentration of Cd2+ due 
to the saturation of binding sites presented at the 
adsorbent surface [35, 38].

Adsorption isotherms
Equilibrium isotherms are applied to 

describe the experimental adsorption data. The 
parameters obtained from the different models 
provide important information on the adsorption 
mechanisms and the surface properties and 
affinities of the adsorbent [32].

The Langmuir and Freundlich models were used 
to determine the adsorption isotherm for Cd2+ 

removal by synthesized adsorbent that the obtained 
results are presented in Table 1. In the Langmuir 
model, a plot of Ce/qe versus Ce should indicate a 
straight line of slope 1/qm and an intercept of 1/
(KL.qm) (Fig. 9A). KF and n are empirical constants 

of the Freundlich model which indicate the 
adsorption capacity and adsorption intensity and 
can be calculated from the slope and intercept of 
the linear plot (Fig. 9B). The correlation coefficient 
showed good positive evidence on the adsorption 
of Cd2+ onto the adsorbent (R2=0.9977) follows 
the Langmuir isotherm. The maximum monolayer 
capacity qm and KL the Langmuir constant were 
calculated from the Langmuir as 5.1867 mg/g 
and 0.1562 L/mg, respectively. Based on the 
correlation coefficient (R2), the fit of the data for 
Cd2+ adsorption onto the adsorbent suggests that 
the Langmuir model (R2=0.9977) gave better fitting 
than that of the Freundlich model (R2=0.9874). It 
may also be concluded from these data that the 
surface of the adsorbent is made up of homogenous 
adsorption patches than heterogeneous adsorption 
patches [32, 39]. The exponent n of 1.7863 is in the 
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Fig. 9. Langmuir (A) and Freundlich (B) isotherm models for the 
adsorption of Cd2+ on the adsorbent.

Model Parameters 

Langmuir 
qm (mg/g) KL (L/mg) R2 

5.1867 0.1562 0.9977 

Freundlich KF (mg/g)/(L/mg)−n N R2 

0.8350 1.7863 0.9874 

 
Table.1 

Table 1. Langmuir and Freundlich model correlation coefficients 
and constants for adsorption of Cd2+ on the absorbent at ambient 

temperature.
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range of 1−10, indicating a favorable adsorption 
[16, 32]. These results indicate that the adsorbent 
developed in the current study has great potential 
for the removal of Cd2+ from contaminated water.

Adsorption kinetics
To study the rate of adsorption [13], its 

mechanism, and its potential rate-controlling steps 
that include mass transport and chemical reaction 
processes [29], the kinetic data were fitted by the 
pseudo-second-order model (Fig. 10), since it has 
been shown to be appropriate for many sorption 
processes [13, 14, 28, 33].

It can be seen that the R2 value of the pseudo-
second-order model is 0.9999. Moreover, the 
calculated equilibrium adsorption capacities (qe 
values) of the pseudo-second-order model are 
closer to the experimental data. These results 
indicated that the Cd2+ adsorption processes 
followed a second-order type kinetic reaction, 
which suggests that the adsorption rate in the 
solutions was probably limited by chemisorption, 
and the adsorption probably takes place via surface 
complexation reactions at specific sorption sites 
[29, 40]. In the other words, it suggested the multi-
step process involving sorption on the external 
surface and diffusion into the interior of adsorbent, 
or the process could be chemisorption through 
valency force by sharing or by exchange of electron 
between the adsorbent and Cd2+ ions [13].

CONCLUSION
In this study, a sulfur-modified magnetic 

nanoparticle was synthesized as an adsorbent for 
the removal of Cd2+ ions from aqueous solutions. 
SEM micrograph of the adsorbent depicted the 
morphological characteristics favorable for metal 
adsorption. The functional groups and surface 

properties of the adsorbent were confirmed by 
the FT-IR spectra and TGA. The optimum pH, 
contact time, and initial concentration of Cd2+ in 
the batch adsorption studies were 5, 10 min, and 
10-30 mg/L, respectively. The equilibrium data 
fitted the Langmuir isotherm model better than 
the Freundlich isotherm model, and the maximum 
monolayer capacity qm and KL the Langmuir 
constant were calculated from the Langmuir as 
5.1867 mg/g and 0.1562 L/mg, respectively. The 
results were well explained in terms of pseudo-
second-order kinetics, which suggests that the 
adsorption rate in the solutions was probably 
limited by chemisorption, and the adsorption 
probably takes place via surface complexation 
reactions at specific sorption sites. These results 
indicate that the adsorbent developed in the 
current study has great potential for the removal of 
Cd2+ from contaminated water.
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