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INTRODUCTION
Water pollution by heavy metal ions has become 

a serious problem nowdays [1-2]. The heavy 
metal ions are not only toxic to living organisms 
in water, but also harmful effects to land animals 
including humans through food chain transfer [3-
4]. The existence of heavy metals in wastewaters 
contributes to water toxicity and represents an 
increasing danger for the environment, human 
beings and other living organisms [5].

Mercury is well known for its extremely high 
toxicity and the servious threat to human life and 
natural environment. Inorganic mercury in water 
is mainly seen in the +2 oxidation state. Mercury 
is released into the atmosphere through a variety 
of natural sources [6]. The world of organization 

(WHO) recommends a maximum uptake of 0.3 
mg/week and 1 μg/L as maximum acceptable 
concentration in drinking water [7].

Various processes and methods such 
as adsorption, electrochemical treatment, 
membrane separation, solvent extraction, 
ion exchange, amalgamation and chemical 
precipitation have been employed to remove 
metal pollutants from aqueous solutions [8-18]. 
However, most of these methods suffer from low 
removal efficiency, especially when large volumes 
of dilute heavy metal solution are present [19]. 
Among the available technological alternatives 
for the removal of trace metals from water, 
adsorption has been considered an economically 
feasible one [20-24]. Different adsorbents such as 
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activated carbon [25], zeolites [26, 27], resins [28], 
biosorbents [29], hydrogel and magnetic hydrogel 
[30-31] have been used for removal of heavy 
metal ions by adsorption. Despite the availability 
of a number of adsorbents for the removal of low 
concentrations of heavy metal ions from aqueous 
solutions, there is still a need for the development 
of new adsorbent with superior adsorption 
capacity, facile adsorption-desorption kinetics, 
high stability, and easiness of operation. Recently, 
nanometer-sized materials have been used for 
wastewater treatment [32-34]. In particular, the 
use of magnetite nanoparticles as adsorbents in 
water treatment provides a convenient approach 
for separating and removing the contaminants by 
applying external magnetic fields. Bare magnetite 
nanoparticles are susceptible to air oxidation and 
are easily aggregated in aqueous systems [35]. 
Thus, for the application of these nanoparticles in 
various potential fields the stabilization of the iron 
oxide particles by surface modification is desirable. 
The magnetic structure of the surface layer, which 
is usually greatly different from that in the core of 
the nanoparticles, can have a notable effect on the 
magnetic properties of nanoparticles [36].

Polyrhodanine has attracted considerable 
attention in various application fields such 
as anticorrosion [37], antibacterial [38], and 
antihistaminic agents [39]. In addition, they can 
be used for detecting or adsorbing of metal ions 
because the Rhodanine mono- meric unit has a 
metal-binding functional groups. Polyrhodanine 
can be expected as a promising candidate for 
efficient adsorbent of heavy metal ions because it 
contains oxygen, nitrogen, and sulfur atoms in its 
monomeric structure [40-42].

There are many reports on the use of magnetic 
nanoparticles (MNP) as sorbent for removal of 
heavy metal ions. Unmodified magnetic Fe2O3 
and Cu(II) ion imprinted Fe3O4 nanoparticles were 
employed as adsorbents for the removal of Cr(VI) 
[43] and Cu(II) [44], respectively, from wastewater. 
Zhu and coworkers have investigated a removal of 
mercury ions from aqueous solutions by Modifying 
activated carbon (MAC) with hybrid ligands. 
Kinetics and isotherm studies demonstrated that 
the Hg sorption by MAC was faster (<30 min) 
and higher (>200%) than that by AC, suggesting 
a high affinity of MAC for Hg ions. The sorption 
by MAC occurred in a wider pH range (4-10 vs. 
5-7), and low ionic strength appeared to enhance 
Hg sorption. In another work, Ian and coworkers 
was used Carapace from the edible crab for the 
biosorption of Hg from aqueous solutions. Batch 

adsorption studies were used to determine the 
effects of contact time, pH, concentration, particle 
size and Cu(II) as a co-ion. Results indicated that, 
the removal of Hg was fast and efficient, attaining 
>80.0% from 500 mg/L by 60 min [45-46].

The aim of this work was to study the influence 
of experimental parameters such as pH, contact 
time, adsorbent dosage on Hg (II) removal. The 
best kinetic and isotherm models were found from 
experimental data.

MATERIALS AND METHODS
Synthesis of adsorbent

The synthesis of Polyrhodanine coated 
Magnetite nanoparticles (Fe3O4@PRh) was in 
accordance with previously published work of our 
research team [47].

Batch removal experiments
Adsorption of Hg(II) was carried out by batch 

technique at room temperature. The isotherm 
studies were performed by mixing 10 mg 
adsorbent (dry) with 10 ml of solution containing 
Hg(NO3)2 at known concentration into a tube and 
insert in the shaker. In all experiments, the flasks 
were shaken at 350 rpm on the orbital shaker at 
room temperature. After agitation, the adsorbent 
was separated by filtration, then metal analysis of 
the solutions was performed by ICP (ICPS-7000 
Sequential Plasma Spectrometer).

The equilibrium concentration of the adsorbed 
Hg(II), qe (in mg g-1) was calculated according to 
the following equation:1

 

𝑞𝑞 𝑒𝑒 =  
(𝐶𝐶0 −  𝐶𝐶𝑒𝑒)𝑉𝑉

𝑀𝑀             
 (1)

Where C0 and Ce (in mg L-1) are the initial and 
equilibrium concentrations of Hg(II) in solution, 
respectively, V (in L) is the total volume of solution, 
and M (in g) is the adsorbate mass.

The effect of PH on adsorption was conducted by 
mixing adsorbent (10 g L-1) with Hg aqueous solution 
(10 ml, C0,Hg(II)=50 mg L-1). The PH was adjusted in 
the range of 2-12, by adding appropriate amount of 
0.1M HCl (hydrochloric acid) or 0.1M NaOH (Sodium 
hydroxide). The flask was shaken at 350 rpm on 
shaker for 5 hours. The optimum pH selected was 6.5.

Kinetic studies were performed under similar 
conditions used for isotherm studies and at pH 6.5 
which was the optimum pH for Hg(II) removal. In these 
studies aliquots of the supernatant were withdrawn 
for Hg(II) analysis at different periods time.
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RESULTS AND DISCUSSION
Characterization of Nanocomposite

Fig. 1 show TEM and FTIR analysis of Fe3O4-
Polyrhodanine core-shell nanocomposite. Fig. 
1(a) indicates the morphology of the core-shell 
nanoparticles was rather homogeneous and 
a thin film of polyrhodanine was coated on 
the surface of Fe3O4 nanoparticles. The dark 
spaces are magnetite nanoparticles (core) and 
the clear spaces are polyrhodanine (shell). The 
mean diameter of core and shell is 15 and 8 nm, 
respectively. Fig. 1(b) shows FTIR spectra of the 
Fe3O4-polyrhodanine core-shell structure. All 
Peaks in the core–shell structure exist in the core( 
Fe3O4) and shell (Polyrhodanine) structure, which 
indicate that there is some interaction between 
PRh and magnetite nanoparticles. The peaks at 
594, 1697, 1450 and 1195 cm-1 were observed. 
These peaks were attributed to the stretching 
vibration of Fe-O, C–C groups, C–N, and C–O 
stretching vibration, respectively[48, 49].

Effects of PH
It is well documented that solution PH is an 

important parameter affecting the sorption of 
heavy metal ions. Therefore, the dependence 
of Hg(II) uptake on PH was studied at a constant 
Hg(II) concentration (10 mg.L-1) using 10 mg 
of nanoadsorbent. As shown in Fig. 2, Hg(II) 
adsorption increase with increasing PH in the 
range of 2-6.5 and decrease with increasing PH in 
the range of 6.5-12. Thus, PH 6.5 was adopted for 
further studies.

The adsorption of the metal ions on adsorbent 
depends on the nature of the adsorbent surface 
and species distribution of the metal ions. Lower 
adsorption percentage of Hg(II) on nanoparticles 
at acidic conditions (PH≤7) is probably due to 
the presence of high concentration of H+ ions on 
the adsorbent surface competing with Hg(II) for 
adsorption sites. The adsorption at PH above 7 
shows a decreasing trend because Polyrhodanine 
destroyed in alkaline environment.

Effects of nanoadsorbent dosage 
For investigation effect of nanoadsorbent 

dosage on adsorption efficiency was conducted 
by mixing amounts of nanoadsorbent (0.05, 
0.075, 0.1, 0.2 gr) in Hg aqueous solution (10 
ml, C0,Hg(II)= 50 mg L-1). All experiments were 
performed at 25 ˚C and in the solution PH 6.5. In 
Fig. 3 Hg(II) adsorption increase with increasing 

Fig. 2: Effect of pH on the adsorption of Hg (II) onto Fe3O4 –Polyrhodanine
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nanoadsorbent in the range of 0.05-0.1 gr and is 
approximately independent of nanoadsorbent 
in the range of 0.1-0.2 gr. Thus, 0.1 gr of 
nanoadsorbent was adopted for further studies.

Effects of contact time and the metal sorption 
kinetics

Fig. 4 shows the time dependant behavior of 
the removal of Hg(II) ions from aqueous solution 
by the nanoadsorbents. From the plot, it is clear 
that the removal amount of Hg(II) increased as the 
contact time elapsed. The equilibrium time was 
reached within 30 min. The initial adsorption rate 
was very fast which may be due to the existence of 
greater number of nanoadsorbent sites available 
for metal ion adsorption. As the remaining vacant 
surface sites decreases, the adsorption rate 
slowed down due to the formation of repulsive 
forces between the metals on the solid surface 
and in the liquid phase.

The pseudo-first-order, pseudo-second-order, 

first-order and second-order kinetic equations 
were chosen to fit the obtained adsorption 
kinetics data and to estimate the rate constant of 
the adsorption phenomenon.

First-order model
The linear form of first-order rate equation is 

the following:2

ln
𝐶𝐶0
𝐶𝐶𝑡𝑡

 = 𝐾𝐾1𝑡𝑡
                   

(2)

Where C0 is initial concentration (mg L-1), Ct is 
the concentration at any time t, t in time (min) and 
K1 is the rate constant of first-order adsorption 
(min-1). Fig. 5 shows a plot of Ln(C0/Ce) versus t.

Second-order model
The linear form of second-order rate equation 

is expressed as:3

1
𝐶𝐶𝑡𝑡

 =  𝐾𝐾2𝑡𝑡 +  
1
𝐶𝐶0                 

(3)

Where C0 is initial concentration (mg L-1), Ct is 
the concentration at any time t, t in time (min) and 
K1 is the rate constant of second-order adsorption 
(g mg-1 min-1). Plot of 1/Ct versus t shows in Fig. 6. 

Pseudo-first-order model
The sorption kinetics may be described by a 

pseudo-first-order equation [50]. The linear form 
of pseudo-first-order rate equation is expressed 
as: 4

ln(𝑞𝑞𝑒𝑒 – 𝑞𝑞)  =  ln 𝑞𝑞𝑒𝑒  −  𝐾𝐾1𝑡𝑡 
    

(4)

Where qe and q are the amount of species 
adsorbed per unit mass of adsorbent (mg g-1) at 
equilibrium and at any time t, respectively, and K1 is 
the rate constant of pseudo-first-order adsorption 
(min-1). Fig. 7 shows a plot of linearized form of 
pseudo-first-order at all concentrations studied. 
The slope and intercepts of plot of Ln(qe – q) 
versus t were used to determine the pseudo-first-
order rate constant K1 and equilibrium adsorption 
density qe. a comparison of the results with the 
correlation coefficients is shown in table 1. 

Pseudo-second-order model
The adsorption kinetics may also be described 

by a pesudo-second-order equation [51]. The 
linear form is the following:

5

𝑡𝑡
𝑞𝑞𝑡𝑡

 =  
1

𝐾𝐾2𝑞𝑞𝑒𝑒2
 +  

1
𝑞𝑞𝑒𝑒
𝑡𝑡

            
(5)

Table 1: Kinetic parameters for Hg(II) sorption onto nanocomposite

Kinetic model Parameter

Pseudo-first-order
K                       (min)-1                          0.0335
q e                       mg g-1                            0.317969
R2                                                              0.9159

Pseudo-second-order
K                        (g mg-1 min-1 )                0.373685
q e                  mg g-1                             4.98008
R2                                                              1

First-order K                       (min)-1                             0.0203
R2                                                               0.8089

Second-order K                      (g mg-1 min-1 )                 0.0105
R2                                                               0.8214

Table 2: Isotherm models for Hg(II) sorption onto nanocomposite

Isotherm model Parameter

Freundlich
K                        L mg-1                         9.9741
η                                                         0.5347
R2                                                          0.9917

Langmuir
Ks                       L mg-1                          0.40265
q m                      mg g-1                          36.6300
R2                                                           0.9847

Temkin
KT                    L mg-1                          5.03947
BT                      mg g-1                              7.3128
R2                                                            0.9702

Table 1: Kinetic parameters for Hg(II) sorption onto nanocomposite

Kinetic model Parameter

Pseudo-first-order
K                       (min)-1                          0.0335
q e                       mg g-1                            0.317969
R2                                                              0.9159

Pseudo-second-order
K                        (g mg-1 min-1 )                0.373685
q e                  mg g-1                             4.98008
R2                                                              1

First-order K                       (min)-1                             0.0203
R2                                                               0.8089

Second-order K                      (g mg-1 min-1 )                 0.0105
R2                                                               0.8214

Table 2: Isotherm models for Hg(II) sorption onto nanocomposite

Isotherm model Parameter

Freundlich
K                        L mg-1                         9.9741
η                                                         0.5347
R2                                                          0.9917

Langmuir
Ks                       L mg-1                          0.40265
q m                      mg g-1                          36.6300
R2                                                           0.9847

Temkin
KT                    L mg-1                          5.03947
BT                      mg g-1                              7.3128
R2                                                            0.9702

Table 1. Kinetic parameters for Hg(II) sorption onto nanocomposite

Table 2. Isotherm models for Hg(II) sorption onto nanocomposite

Fig. 4: Effects of contact time on the adsorption of Hg (II) onto Fe3O4 -Polyrhodanine

90.80%

99.39%

80

85

90

95

100

105

0 50 100 150 200 250 300 350

R
em

ov
al

 e
ff

ic
ie

nc
y 

%

t (min)

Fig. 4:  Effects of contact time on the adsorption of Hg (II) 
onto Fe3O4 -Polyrhodanine



5

L. Rahmanzadeh et al. / Removal of mercury from aqueous solution

J. Water Environ. Nanotechnol., 1(1): 1-8, Summer 2016

Fig. 5: First- order kinetic model for adsorption of Hg (II) onto Fe3O4 –Polyrhodanine at 25 ◦C
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Fig. 5.   First- order kinetic model for adsorption of Hg (II) 
onto Fe3O4 –Polyrhodanine at 25 ◦C

Fig. 6: Second –order kinetic model for adsorption of Hg (II) onto Fe3O4 –Polyrhodanine at 25 ◦C
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Fig. 7: Pseudo– first- order kinetic model for adsorption of Hg (II) onto Fe3O4 –Polyrhodanine at 25 ◦C
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Fig. 7.   Pseudo– first- order kinetic model for adsorption of 
Hg (II) onto Fe3O4 –Polyrhodanine at 25 ◦C

Fig. 8: Pseudo- second- order kinetic model for adsorption of Hg (II) onto Fe3O4 –Polyrhodanine at 25 ◦C
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Fig. 8.  Pseudo- second- order kinetic model for adsorption of 
Hg (II) onto Fe3O4 –Polyrhodanine at 25 ◦C

Where t is time (min), qe and qt are the amount 
of species adsorbed per unit mass of adsorbent (mg 
g-1) at equilibrium and at any time t, respectively, 
and K2 is the rate constant of pseudo-second-order 
adsorption (g mg-1 min-1). The straight line in plot of 
t/qt versus t (Fig. 8) shows the good agreement of 
experimental data with the pseudo-second-order 
kinetic model for dofferent initial concentrations. 
As shown in table 1, the adsorption of Hg(II) onto 
Fe3O4-PRh nanoparticles is more appropriately 
described by a pseudo-second-order kinetic model 
since its correlation coefficient (1.00) is greater 
than other.

Effect of Initial Hg(II) Concentration and Metal 
Sorption Isotherm

Lead adsorption is significantly influenced by 
the initial concentration of Hg+2 ions in aqueous 
solution. In the present study, the initial Hg+2 
concentration is varied from 50 to 300 mg/L while 
maintaining the adsorbent dosage at 10 g/L (PH= 
6 and time= 5 h). Fig. 9 shows the effect of initial 
concentration on percentage removal of Hg2+ ions.
The experimental data were fitted to Langmuir 
[52], Freundlich [53] and Temkin [54] isotherm 
model.

Langmuir isotherm
The Langmuir model represents chemisorption 

on a set of well defined localized adsorption site, 
having the same adsorption energies independent 
of surface coverage and no interaction between 
adsorbed molecules. Langmuir isotherm assumes 
monolayer coverage of adsorbate onto adsorbent. 
The linear form of the Langmuir equation is given 
by:

6

𝐶𝐶𝑒𝑒
𝑞𝑞𝑒𝑒

 =  
1

𝐾𝐾𝑠𝑠𝑞𝑞𝑚𝑚
 +  

1
𝑞𝑞𝑚𝑚

𝐶𝐶𝑒𝑒
          

(6)

Where Ce is the equilibrium concentration of 
metal (mg/L), Q0 and b are Langmuir constants 
related to adsorption capacity and adsorption 
energy respectively. The plot of Ce/qe against 
Ce gives a straight line (Fig. 10) showing the 
applicability of Langmuir isotherm. The values of 
Q0 and b are obtained from slope and intercept of 
the plot and are presented in table 2. The essential 
characteristics of the Langmuir isotherm can be 
expressed by a dimensionless constant called, the 
equilibrium parameter RL defined by:

7

RL =
1

1 + KL. C0               
(7)
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Where C0 is the initial Hg(II) ion concentration 
(mg/L). As the RL values obtained lies between 0 
and 1, the adsorption process is favorable.

Freundlich isotherm:
Freundlich isotherm gives an expression 

encompassing the surface heterogeneity and 
the exponential distribution of active sites and 
their energies. This isotherm dose not predict 
any saturation of the adsorbent surface; thus, 
infinite surface coverage is predicted, indicating 
physisorption on the surface. The linear 
representation of the freundlich adsorption 
equation is: 8

ln 𝑞𝑞𝑒𝑒  =  ln𝐾𝐾𝐹𝐹  +  
1
𝑛𝑛

ln𝐶𝐶𝑒𝑒
     

(8)

Where KF is the energy term and n is an exponent 
term related to the strength of the adsorption. 
The Freundlich plot is shown in Fig. 11 and the 
KF and 1/n parameters with the corresponding 
determination coefficient, R2, are presented in 
Table 2.

Temkin isotherm
This isotherm contains a factor that explicitly 

taking into the account of adsorbent-adsorbate 
interactions. The linear model is given by the 
following equation:9

𝑞𝑞𝑒𝑒 =  𝐵𝐵𝑇𝑇 ln𝐾𝐾𝑇𝑇  +  𝐵𝐵𝑇𝑇  ln𝐶𝐶𝑒𝑒
  

(9)10

𝐵𝐵𝑇𝑇 =  
𝑅𝑅𝑅𝑅
𝑏𝑏𝑇𝑇                    

 (10)

Where KT is Temkin isotherm equilibrium 
binding constant (L/g), BT is Temkin isotherm 
constant, R is universal gas constant (8.314 J mol-1 
K-1), T is temperature at 298 K and BT is constant 
related to heat of sorption (J/mol). The Temkin plot 
is shown is Fig. 12 and KT, BT and R2 are presented 
in table 2.

Table 2 shows that the adsorption behavior 
of Hg(II) ions onto the magnetic nanoparticles 
is best described by Freundlich isotherm model 
because this model yields a higher determination 
coefficient.

CONCLUSIONS
The obtained results indicate that magnetite- 

polyrhodanine is a suitable and effective adsorbent 
for the removal of Hg(II) from aqueous solutions. 
Its adsorption capacity at PH 6.5 is 29.14 mg g-1. It 
was found that the adsorption behavior of Hg(II) 

Fig. 9: Effect of initial Hg (II) concentration for adsorption of Hg (II) onto Fe3O4 –Polyrhodanine at 25 ◦C
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Fig. 11: Freundlich isotherm plot for adsorption of Hg (II) onto Fe3O4-Polyrhodanine at 25 ◦C
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ions onto the adsorbent is best described by the 
Freundlich isotherm model and Hg(II) showed fast 
sorption kinetics following pseudo- second- order 
model.
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