%0 Journal Article %T Synthesis, characterization and application of Lanthanide metal-ion-doped TiO2/bentonite nanocomposite for removal of Lead (II) and Cadmium (II) from aquatic media %J Journal of Water and Environmental Nanotechnology %I Iranian Environmental Mutagen Society %Z 2476-7204 %A Samadi, Susan %A Motallebi, Rokhsareh %A Nasiri Nasrabadi, Maryam %D 2016 %\ 07/01/2016 %V 1 %N 1 %P 35-44 %! Synthesis, characterization and application of Lanthanide metal-ion-doped TiO2/bentonite nanocomposite for removal of Lead (II) and Cadmium (II) from aquatic media %K Cadmium (II) %K Lead (II) %K Nanocomposite %K Nanotechnology %K Removal %R 10.7508/jwent.2016.01.005 %X The efficient application of the photocatalytic activity and superficial adsorption on removing heavy metals from water, two types of sorbents, Nd-TiO2/bentonite and Ce-TiO2/bentonite nanocomposites, were synthesized by sol-gel method. The crystalline nanocomposites were obtained after heat treatment at 500 °C for 3 hours. The results of scanning electron microscopy (SEM) indicates that Nd-TiO2/bentonite and Ce-TiO2/bentonite were produced on a nanoscale. The phase change of both nanocomposite from amorphous to anatase has been investigated by X- ray diffraction. Removal of lead (II) and cadmium (II) were studied through adsorption on these nanocomposites by letting them float in the bulk of sample for a definite time in presence and absence of light. The effective parameters in removal process were studied and optimized. The optimum pH, removal time and sorbent dosage in the absence and presence of light for Pb2+ ion were 7, 0.3 g, 15 min and for Cd2+ ion were 7, 0.4 g, 20 min, respectively. Subsequently, the effect of interfering ions in removal process was investigated at optimum conditions and no evidence of interference was observed. The study showed that reproducibility of method (n=9) is good and suitable. The results further indicated that the removal efficiency of Pb2+ ion with Nd-TiO2/bentonite in the presence of light was more than that in the absence of light. Finally, the equilibrium adsorption data fitted Freundlich and Langmuir adsorption models. %U https://www.jwent.net/article_20477_fdfcfb7fe3e89430be0a16d22ef5e0fa.pdf