@article { author = {Jafari, Hessam and Mahdavinia, Gholam Reza and Kazemi, Bagher and Javanshir, Shahrzad and Alinavaz, Samira}, title = {Basic dyes removal by adsorption process using magnetic Fucus vesiculosus (brown algae)}, journal = {Journal of Water and Environmental Nanotechnology}, volume = {5}, number = {3}, pages = {256-269}, year = {2020}, publisher = {Iranian Environmental Mutagen Society}, issn = {2476-7204}, eissn = {2476-6615}, doi = {10.22090/jwent.2020.03.006}, abstract = {Abstract: In this project, new magnetic Fucus vesiculosus (m-FV) nanoparticles with a high adsorption capacity of cationic dyes were prepared. To reach a nanocomposite with effective performance, Fucus vesiculosus (FV) was modified using ultrasound. Then, the Fe2+/Fe3+ ions were co-precipitated in situ to induce magnetic feature to FV particles. Solutions contaminated with the model cationic dyes, methylene blue (MB) and crystal violet (CV), were treated by employing m-FV particles. Study on time of dyes removal showed a fast removing rate of MB and CV, reaching equilibrium at 10 and 5 minutes, respectively. Analysis of experimental kinetic data by the pseudo-first-order and pseudo-second-order models indicated a well-describing of data by the pseudo-second-order model. The isotherm data of adsorption of both cationic dyes on m-FV were modeled and revealed a well-describing with the Langmuir model. According to the Langmuir model, maximum adsorption capacities of 577 mg/g for MB and 1062 mg/g for CV on m-FV observed. Easy recovery, good recyclability, pH-independent property, as well as the high capability in the removal of cationic dyes, the m-FV can be considered an effective and eco-friendly bioadsorbent in the treatment of dye contaminated solutions.}, keywords = {Magnetic Fucus vesiculosus,Adsorption,Methylene blue,Crystal violet}, url = {https://www.jwent.net/article_44987.html}, eprint = {https://www.jwent.net/article_44987_adcedba4ffd8a508abbab89bdf083759.pdf} }