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ABSTRACT
Contaminants of emerging concern or simply emerging contaminants have been considered as a 
critical environmental issue in recent decades. These compounds have not routinely controlled 
and monitored; therefore they have posed risk to the health of human and environment. Drugs 
are considered as one of the most important emerging pollutants. They introduce to environment 
form different sources such as urine, human excretion, livestock, poultry, pharmaceutical, and 
hospitals. Although they are in trace levels, they are not biodegradable. They cannot be removed 
by conventional treatment processes. Advanced oxidation processes (AOPs) have been designed to 
address the deficiency of conventional methods in the removal of emerging pollutants. Production 
of highly reactive hydroxyl radicals is the base of AOPs. These very reactive radicals effectively 
oxidize emerging pollutants such as drugs. Among different approach of AOPs, photocatalytic 
degradation has been successfully applied to mitigate the side effects of emerging contaminants. 
The ability of the photocatalytic process in the removal of Clindamycin hydrochloride (CLM) from 
aqueous solutions in the presence of UV/TiO2 was studied. The effects of various parameters such 
as adsorption, photolysis, pH, catalyst dosage, initial concentration of antibiotic, and radiation time 
were investigated in a batch photoreactor. Results showed that photolysis and adsorption had a 
negligible contribution to the clindamycin removal. The maximum clindamycin removal rate was 
obtained under optimal conditions, such as pH of 5, 0.5 g/l of TiO2, initial clindamycin concentration 
of 2 /L. This optimum condition was achieved for 90 minutes. The CLM photocatalytic degradation 
kinetics showed that CLM degradation follows the pseudo-first-order kinetics.
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INTRODUCTION
Among the various compounds that cause 

environmental pollution, residual drugs in 
wastewater pose serious environmental issues. 
They are considered as emerging pollutants[1, 2]. 
Although many works have been made to clean the 
environment from pollutants in recent decades, 
emerging pollutants have been disregarded[3, 4]. 
While the pathway of general pollutants in the 
environment is under control and monitoring, 
the fate of emerging pollutants is not clear. Lacks 
of environmental legislation and weakness of 
conventional methods in the removal of drugs 

lead to concern in scientific communities [2, 4-7]. 
Although the emerging pollutants in wastewater 
might be in trace levels, bioaccumulation of drugs 
in the environment have threatened human health 
and consequently posed potential hazards to 
ecosystems [2, 8]. Among different types of drugs, 
antibiotics are frequently consumed by human, 
livestock and poultry industries. Antibiotics are 
used as an effective drug against bacteria, fungi, 
infections and all types of parasites. Increasing 
rates of using antibiotics led to the release of a high 
amount of these types of drugs to environments. 
Their introduction into the environment can lead 

http://creativecommons.org/licenses/by/4.0/.


140

A. Gholami  et al. / Photocatalytic degradation of Clindamycin

J. Water Environ. Nanotechnol., 4(2): 139-146 Spring 2019

to reducing bio-degradation of organic matter in 
nature, including leaves and other plant materials. 
They aren’t biodegradable, consequently, antibiotic-
resistant bacteria (ARB) and antibiotic resistance 
genes (ARG) are other concerns [9-12]. Therefore, 
the removal efficiency of conventional methods 
for these contaminants doesn’t meet the standard 
criteria. The deficiency of conventional wastewater 
treatments leads to some robust technique such as 
advanced oxidation processes (AOPs)[13].

AOPs are environmental friendly approaches 
based on producing hydroxyl (OH●) and superoxide 
(O●-) radicals. These radicals destroy pollutants 
and organic matters non-selectively. Different 
approaches of AOPs have been applied to remove 
antibiotics [17-19]. For example, amoxicillin, 
ampicillin, atenolol, and caffeine could be removed 
using Photolysis, ozonation, ozonation with UV 
radiation, homogeneous catalytic ozonation[18]. 
The ozonation process has extensively applied in 
a variety of studies to remove indomethacin[20], 
propranolol [21], tetracycline [22], Carbamazepine, 
diclofenac, sulfamethoxazole, and trimethoprim 
[23]., Ibuprofen, acetyl sulfamethoxazole 
and metoprolol[24]. The efficiency of UV/
H2O2 and UV were examined for removal of 
Sulfamethoxazole, sulfamethazine, sulfadiazine, 
trimethoprim [25], Sulfasalazine, sulfapyridine 
and 5-aminosalicylic acid [26], azithromycin, 
carbamazepine, dexamethasone, erythromycin, 
and oxytetracycline[27], Sulfamethoxazole and 
ibuprofen[28]. Diclofenac, sulfamethoxazole, 
iopromide, and 17-alphaethinyl estradiol were 
removed using Electrochemical oxidation[29]. 
Ultrasound/Fenton oxidation (sonoFenton) 
degraded Ibuprofen[30]. Degradation of 
Venlafaxine was investigated by Electro-peroxone 
process[31]. Among the advanced oxidation 
processes, the semiconductor heterogeneous 
photocatalytic process has high efficiency in the 
decomposition of organic compounds resistant 
to biotic degradation [32-34]. The main focus 
of researches has been on the application of 
semiconductor in the removal of drugs and other 
pollutants from the environment[35]. Having 
photostability and ability to readily oxidize 
both organic and inorganic matters, has made 
a fundamental role for TiO2 since the origin of 
the photodegradation process[36]. Having a 
considerable bandgap, in the rutile (bandgap 3.0 
eV) and anatase (bandgap 3.2 eV) .phases, TiO2 has 
been widely used in different aspect of science  [35, 

37]. A combination of 25% and 75% in the rutile 
and anatase phases, respectively, have been used 
successfully in the removal of emerging pollutants 
[38,39]. So far, many semiconductors have been 
investigated as photocatalyst but TiO2 is still used 
as the most widely used photocatalyst due to its 
properties such as chemical and photochemical 
stability, abundance, low cost, and high optical 
activity. In addition, other semiconductors, such 
as ZnO, CdS and GaP, cannot be cleaned from the 
environment due to the solubility and production 
of toxic products  [2,40]

Clindamycin is a lincosamide antibiotic which 
is very effective against gram-positive and negative 
anaerobic pathogens as well as aerobic microbes. 
This antibiotic can destroy them by inhibiting 
the synthesis of bacterial proteins [41]. Although 
Clindamycin has side effects such as anaphylaxis, 
polyarthritis, hepatotoxicity, and diarrhea 
Clindamycin is widely used orally (hydrochloride 
salt), intravenously (phosphate salt) and topically. 
Therefore, it can be introduced to wastewater 
through urine and human excretion, and the 
destruction of expired drugs [42, 43]. Consequently, 
the presence of Clindamycin in wastewater could 
result in ARB [44].

Using moving bed biofilm reactors have 
been removed Clindamycin from the effluent 
of conventional wastewater treatment plant 
[43]. The sorption method by two surfactant-
modified zeolitic tuffs was showed the removal 
of Clindamycin between 12 and 15 hours [44]. 
Nanoscale zero-valent iron (nZVI) particles in the 
presence of hydrogen peroxide and sonolysis were 
used to degrade Clindamycin. The process showed 
that the combined system was more efficient in the 
removal of Clindamycin [45]. Clindamycin was 
degraded in aqueous solutions using an anodic 
oxidation process under galvanostatic conditions. 
Ti/SnO2-Sb anode and a 316 stainless steel 
cathode made electrolysis cells [46]. Using ZnO 
as photocatalyst in a batch reactor, Clindamycin 
was removed from aqueous solutions [47]. Using 
TiO2 as a semiconductor photocatalyst, removal of 
Clindamycin was investigated under UV radiation 
in aqueous solutions. Experiments were conducted 
under different conditions of pH. Moreover, 
the effects of some parameters such as initial 
concentrations of Clindamycin, catalyst dose, 
radiation time were studied. The degradation rate 
of antibiotic was investigated by measuring the 
kinetics of the reaction. 
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EXPERIMENTS
Materials 

Titanium dioxide (TiO2) with a purity of 99.5% 
produced by DEGUSSA Co. was used in this study. 
Analyzes such as X-ray diffraction analysis XRD 
(X’Pert Pro, PANalytical, Holland) in the scanning 
range (2θ) of 10–80°, Transmission electron 
microscopy TEM (CM120, Philips, Holland) at 
an accelerating voltage of 120kV, and Fourier 
transform infrared spectrometer FT-IR (IRAffinity-
1S, Shimadzu, Japan) has been used to determine 
the specifications of TiO2. Clindamycin HCl 
(C18H33ClN2O5S.HCl) Antibiotic was prepared 
from the Sigma Aldrich Co. Other chemicals were 
purchased from the Merc Co. Sodium hydroxide 
(NaOH) and hydrochloric acid (HCl) 1N were used 
to adjust the pH. Cyclohexane (C6H12), potassium 
iodide (KIO3) and sulfuric acid (H2SO4) 95% were 
used to analyze the samples.

Photoreactor 
Fig. 1 shows the photoreactor used for experi-

ments. This photoreactor was a 1000 ml metallic 
cylinder. Three UV-C lamps were used as sources 
of radiation. The distance between each lamp was 
the same and equal to radiate uniformly to the 
samples. Direct contact between lamps and solution 
was prevented by coating the lamp in a quartz tube.  
Samples were homogeneous using an air pump. 
Sampling was carried out through an outlet at the 
top of the reactor.

Photocatalytic experiments
The samples consisted of a solution containing 

a specific concentration of Clindamycin. To make 
homogeneous solutions, samples were placed on 
the shaker for 15 minutes. TiO2 was added to the 
solution and stirred using a magnetic stirrer to mix. 
Ultrasonic bath for 15 minutes was used to prevent 
aggregation of TiO2. pH was adjusted using HCl 
and NaOH. Prepared samples were then poured 
into the photoreactor and aeration was conducted 
by an air pump. From this moment on which 
is the beginning of the photocatalytic reaction, 
sampling was performed at specified intervals. At 
each sampling5 ml of solution was extracted from 
the photoreactor. After the reaction, the centrifuge 
was used at 2000 rpm for 20 minutes to separate 
photocatalyst nanoparticles.

Sample analysis
Sample analysis was performed by 

spectrophotometric. The method was based on 
the production of sulfone from organic sulfides. 
Due to methylthio group attached to sugar 
moiety of Clindamycin, sulfur was oxidized by 
using potassium iodate in an acidic environment. 
Liberated iodine was equivalent to oxidation of 
sulfur atom. Iodine was extracted in cyclohexane 
and measured using spectrophotometer at 520 nm 
[48] To apply the method Centrifuged samples 
were transferred to 25 ml flasks. To each flask, 3 
cc of potassium iodate solution 1% and 2 cc of  

 

 

 

 

 

 

 

 

 

 

Fig. 1. Photoreactor used in the experiments 

 

Fig. 1. Photoreactor used in the experiments
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sulfuric acid 30% v/v were added. Then, 10 ml 
of cyclohexane was added to each flask. A two 
different phase solution was made after adding 
cyclohexane. The flasks were placed in a water 
bath at a temperature of 60 °C. After 45 minutes, 
samples were removed from the water bath and 
placed at room temperature. Waiting to reach the 
room temperature, the cyclohexane layer in each 
flask was extracted and transferred to another 
25 ml volumetric flasks. Once more, 5cc of 
Cyclohexane was added to the first flasks and the 
extraction of cyclohexane was performed after 15 
minutes but at room temperature. The procedure 
was repeated too. Extracted cyclohexane was 
volume up at 25 ml by cyclohexane. The absorbance 
measurements were carried out at the wavelength 
of 520 nm against the control which was equal to 
Clindamycin in each flask after photodegradation. 
The procedure has been presented in Fig. 2.

RESULTS AND DISCUSSION
Photolysis and adsorption

To measure the amount of adsorption, 
experiments were conducted in darkness with 

a solution containing 2 g/l of CLM and catalyst 
content of 1 g/l. The results showed that the 
absorption was negligible and only 20%. Photolysis 
experiments were investigated for 120 minutes. The 
results showed the negligible contaminant removal 
of about 10%.

effect of PH 
The effect of pH on the removal of Clindamycin 

was investigated during 120 minutes (Fig. 3). The 
analyses of pH effects were examined at a pH of 5, 
7, and 9. Fig. 3 shows that the maximum removal 
rate is achieved in acidic pH.

The pH of a solution is one of the important 
factors for the photocatalytic purification of 
organic pollutants. It has a direct impact on the 
efficiency of the process. The changes of pH affect 
the catalyst surface, the size of the catalyst clots, the 
solubility of the antibiotics and also the ability to 
produce radical hydroxyl. Moreover, the nature of 
the pollutant ion, which varies with the changing 
pH of the environment, leads to the creation of 
electrostatic interactions between the catalyst 
surface and the pollutant molecule. 

       

 

 

 

 

 

 

Fig. 2. spectrophotometric and titrimetric method (a) Flasks removed from the water bath 

, (b) Flasks extracted from Cyclohexane and (c) Flasks volume up at 25 ml by Cyclohexane. 
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Fig. 2. Spectrophotometric and titrimetric method (a) Flasks removed from the water bath, (b) Flasks extracted from Cyclohexane 
and (c) Flasks volume up at 25 ml by Cyclohexane.

 

 

 

Fig. 3 Effects of pH on photocatalytic degradation of Clindamycin 
Fig. 3. Effects of pH on photocatalytic degradation of Clindamycin
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Due to the high concentrations of hydrogen 
ions in acidic medium, H● radicals are formed. 
Ultimately, they transform into hydroxyl radicals 
(OH●) with high degradation ability, using the 
oxygen present in the solution. Reducing the 
reaction rate in alkaline environments is due to 
the formation of insoluble compounds, followed 
by the reduction of radiation intensity. Therefore, 
the potential production of hydroxyl radicals is 
decreased [51].

Effects of Clindamycin concentrations
Fig. 4 shows the effect of the initial concentration 

of Clindamycin. By decreasing the initial 
concentration of antibiotic, removal rates will 
increase. The maximum removal rate was observed 
at an antibiotic concentration of 2 g/L.

Increasing the initial concentration of the 
pollutant leads to decreased photodegradation 
rate. This phenomenon occurs due to saturation or 
inactivity of a limited number of active sites on the 
catalyst surface. High concentrations of pollutants 

can form intermediates. These compounds could 
be absorbed by the catalyst; consequently, degrade 
the active sites. Occupied sites are no longer able 
to absorb active species (H2O, OH●, and O2). This 
circumstance reduces the reaction with holes of the 
capacity and conduction band electrons thereby 
reduces the production of oxidants. Moreover, in 
medium with high concentrations of pollutants, 
lower number of photons reaches the catalyst 
surface which reduces the activity of optical 
degradation [52,53]

Effects of catalyst concentrations
To evaluate the effect of catalyst, different 

amount of TiO2 were used. The results have been 
presented in Fig. 5. As observed, increasing the 
catalyst content to a specific point increases the 
pollutant removal rate. However, a further increase 
of catalyst from that point leads to a decrease in 
removal rate.

Increasing catalyst content leads to increased 
pollutant degradation efficiency because the 

 

 

 

Fig. 4 Effects of Clindamycin concentration on photocatalytic degradation 

 

 

 

Fig. 5 Effects of Clindamycin concentration on photocatalytic degradation 

Fig. 4. Effects of Clindamycin concentration on photocatalytic degradation

Fig. 5. Effects of Clindamycin concentration on photocatalytic degradation
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number of photons absorbed increases. 
Absorbing more photon results in the number 
of active sites on the catalyst surface. Increasing 
the number of active sites can also play an 
important role in the production of hydroxyl 
and superoxide radicals. However, an excessive 
increase in catalyst content yields a drop in 
reaction rate. This phenomenon occurs due to 
increased turbidity and consequently reduced 
light penetration and dispersion [54].

Effect of time
Effects of time on the removal of the antibiotic 

during 120 minutes are shown in Fig. 6. results 
show that the removal rate was initially high. By 
passing the time, the reaction rate is reduced and 
reaches the equilibrium state.

At the beginning of the experiments, there is a 
large number of vacant sites on the catalyst surface. 
After a time, the number of these active sites 
decreases. In the equilibrium state, the degradation 
rate is stable. In the present study, stable conditions 
are after 90 minutes[51].

Degradation kinetics
The following equation was used to study the 

kinetics of the reaction based on regression analysis:

dc KC
dt

= −  

By integrating the equation above, the following 
equation is obtained:

ln
0

C Kt
C
  = − 
 

 

Where K and t are respectively constants of 
reaction rate and time. C and C0 are the reactant 
concentrations at t = t and t = 0.

The results in optimal conditions (pH of 5 and 
initial concentration of Clindamycin of 2 g/l ) 
during 120 minute for catalyst amount of 0.25, 0.5, 
and 1 g/l  are shown in Fig. 7. It can be observed, 
the degradation is in the form of a straight line. The 
slope of the graph represents the constant reaction 
rate (K). Accordingly, it can be concluded that the 
photocatalytic degradation of Clindamycin follows 
the first-order kinetics.

 

 

 

Fig. 6 Effects of Clindamycin concentration on photocatalytic degradation 

 

 

 

Fig. 7 Effects of TiO2 amount on degradation kinetics(CLM=2 g/l,pH=5) 

 

Fig. 6. Effects of Clindamycin concentration on photocatalytic degradation

Fig. 7. Effects of TiO2 amount on degradation kinetics (CLM=2 g/l,pH=5)
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CONCLUSION
Degradation of Clindamycin hydrochloride 

antibiotic was investigated under laboratory 
conditions by heterogeneous UV/TiO2 process. The 
results showed that direct adsorption and photolysis 
did not affect photocatalysis. The optimum point 
was observed at pH = 5, Clindamycin concentration 
of 2 g/L, catalyst amount of 0.5 g/l, during 90 
minutes. The degradation kinetics follow the 
pseudo-first-order The results of this study prove 
that the UV/TiO2 process is a very effective method 
in removal of Clindamycin hydrochloride from the 
aqueous medium. 
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