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ABSTRACT
A group of supramolecular solid materials known as “metal-organic frameworks”(MOFs) is a type of hybrid 
network made up of a variety of inorganic and organic linkers that are all tightly bonded to metal ions. 
These classes of compounds have a larger surface area with the benefit of variable pore sizes, a diverse 
structure, and a lovely appearance. They are promising materials for a range of applications because 
they are easy to develop and have consistent, fine-tunable pore structures. The controlled mixing of 
MOFs with functional materials is resulting in the development of new multifunctional composites and 
hybrids that display unique properties that outperform those of their parts as a whole. The structural 
characteristics, classification, and The most widely used and successful strategies for MOF composite 
synthesis are presented in the encapsulation method, Solvothermal method, Solution impregnation, 
and Click chemistry (reaction) method), numerous characterization techniques and their applications 
MOFs composite have all been covered in this review. Crystals with extremely high porosity and good 
thermal and chemical stability can be produced by carefully choosing the MOF ingredients. Because of 
these properties, MOF composites can be used for a wide range of applications, including, sensing toxic 
chemicals, drugs, gases, trace metals, components of foods, and many more, and also for the detection 
of different materials. This is a rapidly developing interdisciplinary and novel research area therefore to 
present the current situation of the field; this article has covered recent achievements as well as new 
avenues to investigate the future scope and uses of MOF composites/hybrid.

Keywords: Metal-Organic Frameworks; MOF composites; Porous material; Separation; Sensing

How to cite this article
Melese A., Mulate K., Hussen A., Hailekiros A., W. Wubet, Review on Synthesis Method, Classification and 
AdsorptionSeparation and Sensing Application of Metal-Organic  Frameworks (MOFs) Based Composites. J. Water 
Environ. Nanotechnol., 2024; 9(1): 18-43. DOI: 10.22090/jwent.2024.01.02

REVIEW PAPER

                           This work is licensed under the Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

*  Corresponding Authors Email: wholesomeaklilu@gmail.com 
**Corresponding Authors Email: kenaegzermulate@gmail.com

INTRODUCTION
Metal-organic frameworks, often known as 

MOFs, have become a diverse family of crystalline 
materials with extremely high porosity (up to 90% 
free volume) and massive inner surface areas, 
exceeding 6 000 m2/g [1]. Since its initial definition 
in the 1990s, Metal-Organic Frameworks (MOFs), 
which consist of coupling units (metal ions 

or metal-oxo clusters) coordinated by organic 
ligands, have drawn a lot of interest [2, 3, 4]. Due 
to its potential for separation [5], adsorption [6], 
catalysis [7], chemical sensors [8], miniature 
electronics [9], optical materials [10], drug delivery  
[11], electrical and optoelectronic devices [12], and 
other applications, MOFs have gained significant 
attention by researchers. The three most commonly 
used orders of 3D porous covalent polymers 
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are zeolites [13], metal-organic frameworks 
(MOFs) [14], and covalent organic frameworks 
(COFs) [15, 16]. Metal-organic frameworks 
are crystalline porous materials having regular 
network topologies made of metal ions (or 
metal clusters) and organic linkers. They are also 
known as porous coordination polymers (PCPs) 
[17]. MOFs may be produced utilizing a variety 
of unique synthetic techniques, including slow 
diffusion, hydrothermal (solvo-thermal) [18], 
electrochemical [19], mechanochemical [20], 
microwave-assisted heating [21], and ultrasound 
[22], depending on the final structures and 
features. The composite of MOF can be made in 
a variety of ways, including, encapsulation [23], 
impregnation [24], infiltration [25], solid grinding 
[26], coprecipitation [27], click reaction [28] , 
and more. Diverse preparation techniques can 
result in different MOF composite characteristics, 
which can increase the usefulness of composite 
materials [29, 30]. Numerous MOFs have 
been produced, and they have many beneficial 
properties, including (a) adjustable pore size; 
(b) ordered structure; (c) tunable diameter; (d) 
resistance to changes in their morphologies; (e) 
convenient and affordable processing conditions; 
(f) easy sample collection; (g) resistance to 
metal aggregation; (h) resistance to architecture 
disntegrat-ion; and (i) attachment of other 
substances inside the pores or on the surface [31, 
32, 33]. Even though MOFs have a lot of benefits, 
they also have significant drawbacks that restrict 
their use, including low mechanical strength, poor 
chemical and hydrothermal stability, and a single 
function [34, 35]. As a result, MOF composites 
were designed to address these shortcomings. 
In comparison to pure MOFs, MOF composites 
display novel chemical and physical properties or 
improved performance because of the synergistic 
interaction between MOFs and functional 
materials [36, 37]. When compared to pure MOFs 
and other conventional materials, the use of MOF 
composites provides significant advantages and 
development potential examples according to 
Olorunyomi et al. report MOF composites are 
identified as advanced materials with potential for 
deployment in analytical devices for chemical and 
biochemical sensing applications [38], Ahmed 
and Jhung also reported the MOF composites 
adsorption applications [39] and Li et al. state 
that because of MOF-based membranes’ greater 
performance, they have garnered a lot of interest 
in separation applications [40].

 
CLASSIFICATION OF MOF AND MOF 
COMPOSITE

There are various kinds of MOFs, and these 
MOFs can integrate with other functional 
resources to develop MOF composites with a 
variety of functions (Fig. 1). Examples of these 
materials include metal NPs [41], metal oxides 
[42], quantum dots, carbon materials [43], 
molecules, polyoxometalates [44], polymers [45], 
and enzymes [46]. Depending on their constituent 
parts, the MOFs can be divided into a variety of 
categories. According to the functional materials 
that have been doped, the MOF composites are 
categorized.

Classification of MOFs
Iso-reticular MOFs (IRMOFs)

Reticular chemistry, a fundamental technique 
used to produce these kinds of materials, involves 
the connecting of molecular-scale building 
blocks into predetermined shapes that are 
recognized and ordered by strong bonding forces 
[47]. The primary building blocks of IRMOFs are 
secondary inorganic structural units [Zn4O]6+ 
and various aromatic carboxylic acid ligands 
[48]. Isoreticular MOFs (IRMOF), a subclass of 
MOFs, have a similar cubic topology to MOF-5 
and are connected by linear organic linkages [49]. 
Due to its easy synthesis, effective gas adsorption, 
and useful storage properties, IRMOF-n (n = 
1–16) has been the subject of significant research 
[50, 51]. 

Zeolitic imidazolate frameworks (ZIFs) 
Zeolitic imidazolate frameworks (ZIFs) are 

a distinct family of metal-organic frameworks 
(MOFs) that maintain the basic chemical 
connection over wide variations in the network 
topology and related attributes. Because of their 
huge potential for hydrogen storage and carbon 
dioxide capture, ZIFs currently draw a great deal 
of attention [52]. There are different produced 
ZIFS including ZIF-5, ZIF-7, ZIF-8 [51, 52], 
ZIF-9 [53], ZIF-11, ZIF-71, ZIF-67 [54], ZIF-90 
[55], ZIF-L [56], ZIF-95 [57], ZIF-100 [58], etc. 
Tetrahedral Si(Al)O4 units are chemically bonded 
by bridging O atoms to form more than 150 
various forms of framework that makeup zeolite 
structures. In water, aqueous alkaline solution, 
and refluxing organic solvents, ZIFs exhibit 
exceptional chemical stability [59]. 
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Coordination polymers (PCPs)
PCPs also known as Metal-organic frameworks 

(MOFs), are porous, polymeric (1D, 2D, or 3-D) 
materials linked together by coordination bonds 
between metallic ions and organic linkers [60]. 
In comparison to zeolite or activated carbon, 
PCPs have a better application potential as a 
result of their uniformity, permeability, large 
surface area, and performance factor. In addition 
to coordination bonds, PCPs also contain other 
weak contacts or electrostatic interaction bonds 
(H-bonds, -electron stacking, or van der Waals 
interaction), which gives them the potential to 
change their structural composition which is 
advantageous in separation applications. The 
use of Zn4O-based MOF compounds for fuel gas 
storage is widely recognized due to their high 
porosity and huge surface area [61]. 

Porous coordination networks (PCNs)
These are a novel class of nanoporous materials 

that possess good chemical and mechanical 
durability, huge surface areas, high porosities, 
and variable pore sizes [62]. Some examples of 
PCN-10, PCN-11 [62], PCN-12, PCN-14, PCN-
15 [63], PCN-333 [64], PCN-224 [65], and PCN-
222 [66], materials widely used as a sensor and for 
H2 storage due to their nanoscopic cages. It has 
been determined that several PCNs, including 
PCN-5, PCN-6 [67], PCN-610, PCN-46, PCN-
68, PCN123, and PCN-124, are promising for 
CO2 removal [68, 69, 70]. Results show that 
PCN-59 exhibits the highest CO2/N2 selectivity 

among the various PCN frameworks taken into 
consideration [71].  

Materials Institute Lavoisier (MILs)
MILs are porous metals of carboxylate salts with 

large pores and permanent porosity made up of 
various trivalent metal cations and carboxylic acid 
ligands [72]. MILs can serve as vehicles for drug 
delivery. Busulfan, azidothymidine triphosphate, 
doxorubicin, and cidofovir are examples of anti-
tumor and anti-AIDS active compounds that 
could be collected by MIL series frameworks and 
returned in human organs such as the liver [73]. 
MIL materials include MIL-53(Fe) [74], MIL-88B 
(Fe) [75], MIL-68(Ga) [76], MIL-88A (H2O2) [77], 
MIL-125(Ti) [78], MIL-101(Cr) [79], Fe-MIL, Al-
MIL [80], Cr-MIL [81], etc. Due to its permeable 
or flexible structure, MIL-53(Fe) is frequently used 
to remove pigments and hazardous chemicals from 
aqueous solutions [82]. An electrochemical sensor 
that can accurately detect the presence of PQ in a 
food sample was built using Fe2O3-MIL-100 [83].

Classification of MOF composites
MOF-metal nanoparticle composites

Due to their critical role in catalysis, metal 
nanoparticles (MNPs), especially small-size 
MNPs, are increasingly gaining significant 
attention. Unfortunately, Small MNPs are 
thermodynamically unstable and more likely to 
agglomerate during catalytic reactions because of 
their high surface energy, which results in a loss of 
efficiency [85]. MOFs are applied to modify these 
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Fig. 1. Structure of metal framework of a) IRMOF-5 [49] b) ZIF-8 [52] c) PCPs [61] d) PCN-222 [66] e) MIL-88B (Fe) [75] f) MIL-68 
(In) [84]
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conditions. There are two alternative methods for 
producing MNPs inside MOFs. The primary and 
most popular technique involves using MOFs as 
stabilizing substrate components, which provide 
restricted areas that prevent agglomeration and 
control particle size. The process requires precursor 
infiltration in stages, followed by decomposition or 
reduction [86, 87]. The other technique involves 
encapsulating organic material, surfactants, and 
polymers that have stable prefabricated NPs in 
solution, followed by the addition of appropriate 
precursors to produce the framework around the 
prepared NPs [88]. The MNPs- MOF compounds 
formed using those methods including Pd NPs/
MOFs [89], Au NPs/MOFs [90], Ru NPs/MOFs [91], 
Cu NPs/MOFs, Pt NPs/MOFs [92], Ni NPs/MOFs 
[93], Ag NPs/MOFs [94], etc are some examples 
(Fig. 2). High-performance anodes for lithium-ion 
batteries can be made using Si-MOFs [95]. Cu-
MOF-GN/GCE shows effective anti-interference 
characteristics for the detection of H2O2 and AA in 
the presence of different carbohydrates [96].  

MOF-carbon composites
Their large surface area, electrical properties, 

and high stability of carbon-based materials (CMs) 
make them excellent candidates for use as catalysts, 
energy storage systems, waste disposal, and drug 
delivery systems [97]. Because of their drawback 
in the field of sensing, separation, and adsorption 
MOF-carbon composite materials have received 
attention in recent times. As an example, smaller 
molecules like ammonia are challenging to remove 

from airstreams using activated carbon. Many 
findings confirmed that MOF-carbon composites 
are interesting materials for use in air purification 
[98]. The Co-MOF-MPC composite may be very 
promising for the designing of electrochemical 
environmental sensors because it shows excellent 
catalytic performance for the oxidation of hydrazine 
and reduction of nitrobenzene [99]. CeCu-MOF, 
synthesized by a hydrothermal process, is utilized 
as an electrode material in lithium-ion batteries 
and supercapacitors [100]. By using an in-situ 
growth technique, Ni-MOF@CNT material was 
produced on the GN substrate and used as a unique 
self-supporting composite for all-solid-state 
supercapacitors with a high energy density [101]. 

 
MOF-metallic compound composites 

Metal oxide nanoparticles serve a crucial 
function, in the field of materials chemistry, 
medicine, agriculture, information technology, 
biomedical, optical, electronics, catalysis, 
environment, energy, and sensing [102]. A new 
technique (MOF-metallic compound composite) 
was developed to examine the uses and limitations 
of metal oxide nanoparticles. To produce 
composites with the best attributes, metallic 
compounds such as SiO2 [103], Fe3O4 [104], ZnO 
[105], CuO [106], CdS [107], and ZnS [108] have 
been doped into MOF materials. The in-situ 
solvothermal approach was used to produce Zr-
based UiO-66-NH2 MOF for improved activity 
towards Cr (VI) adsorption and photocatalytic H2 
evolution [109]. Metal-organic frameworks derived 
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Fig. 2. The structure and MOF- derived materials and their composite a) Ru@MOF-5 composite [89] b)MOF-derived carbon energy 
materials [116] c) metal oxide@ KIT-6 [117] d) Enzyme encapsulation on FNPCN-333-SOD e) Enzyme encapsulation on FNPCN-
333-CAT [118] f) MOF/COF composite [119]. 
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In2O3/ZnO synthesized using a straightforward 
co-precipitation process and thermal annealing in 
air can also be used as a highly sensitive H2S gas 
sensor [110]. The solvothermal approach is applied 
to synthesize bimetallic FeO/NiO MOF and rGO-
based composites, which can also be used in the 
methanol oxidation reaction [111]. The adsorbent 
MgFe2O4@MOF was synthesized using a simple 
solvothermal approach to eliminate the organic 
dyes Rhodamine B (RB) and Rhodamine 6G 
(Rh6G) from water samples [112]. 

MOF-enzyme composites
Enzymes are flexible, environmentally 

friendly biological catalysts that have been 
widely used in the chemical, food, cosmetics, and 
pharmaceutical industries. Due to Low stability at 
higher temperatures and extreme pH values, slow 
recovery, and the challenge of reusing enzymes 
have all restricted its use [113]. The development 
of immobilization as a new technique for the 
stabilization, convenience of restoration, and 
persistent usage of enzymes. According to their 
method of synthesis, MOF-enzyme composites 
can be divided into four major categories: surface 
attachment, covalent coupling, pore entrapment, 
and co-precipitation [114]. The encapsulation of 
lipid into ZIF-67 MOF forms a lipase@ZIF-67 
composite and this composite is used as a catalyst 
for the production of biodiesel. Lipid encapsulation 
in ZIF-67 greatly improved the enzyme’s heat 
stability, storage stability, and reusability [115]. 
GOx-ZIF-8 biocomposites are an excellent material 
for electrochemical biosensing applications for 

the detection of glucose and the composite was 
synthesized using a biomineralization-assisted in-
situ encapsulation approach [116]. In general, the 
enzyme-MOF composites have greater application 
potential and have superior catalytic activity than 
free enzymes.

SYNTHESIS OF MOF COMPOSITE 
Most of the problems related to everyday 

activities are solved by MOF, a fascinating and 
emerging science that is also making significant 
contributions to the advancement of technology. 
As technology develops, new synthetic techniques 
for MOF composites are continuously being 
developed. Some of the synthetic methods including 
mechanochemical, electrochemical, microwave, 
and sono-chemical methods, encapsulation, 
solution impregnation, solvothermal, one-pot, and 
diffusion techniques. 

Encapsulation method
The most popular and established method 

for producing MOF composites is encapsulation 
as shown in Fig. 3. The “build-bottle-around-
ship” or “encapsulation method” is based on two 
key processes. (I) NPs are synthesized that are 
homogeneous in size, structure, and morphology. 
(II) Building MOF shells on previously produced 
NPs [120, 121]. Encapsulation allows for the 
incorporation of different morphologies and sizes 
of NPs, carbon compounds, molecular catalysts, 
enzymes, and other substances within MOF shells 
[122]. Pd@ZIF-8 is a MOF-composite material 
synthesized by the encapsulation method in a 
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Fig. 3. Synthetic route of Metal@MOF, Metal oxide@MOF, Lipid@MOF composite synthesized by using encapsulation method. 
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simple, rapid, and sustainable manner [123]. 
EY@Zr-MOF composite was also synthesized by 
encapsulation of EY molecule and Pd on the surface 
of the ZIF-8 MOF [124]. 

Solvothermal method
A reaction mechanism in an enclosed system in 

the presence of a solvent at a temperature greater 
than that of such a solvent’s boiling point. This 
technique demonstrates the advantages of low 
cost and effective diffusion [125, 126]. An easy 
solvothermal technique was used to synthesize Fe-
MOF/RGO composites with various RGO ratios. 
The precursor used for synthesis Fe-MOF/RGO 
was RGO, N, N-dimethylformamide (DMF), 1, 4- 
dicarboxybenzene, iron (III) chloride hexahydrate, 
and acetic acid glacial at a temperature of 150 oC 
for 2 h in Teflon-lined stainless autoclave (Fig. 4) 
[127]. The 6% weight of the CdS/MIL-101 catalyst 
was synthesized using the solvothermal method. 
In a Teflon-lined autoclave, MIL-101, DMSO, and 
C10H14CdO4 were combined and stirred for two 
hours [128]. 

Solution impregnation
The most popular and simple way to produce 

assisted catalysts for a range of heterogeneous 
reactions is the impregnation method [134, 135]. 
There are three fundamental steps. A substantial 
surface area support is first impregnated with a 

metal precursor solution, which is then condensed 
at a high temperature. Finally, the metal precursor 
solution is reduced in a suitable environment to 
make the catalysts [37, 136]. An Ag@MOF-5@
chitosan composite was synthesized using the 
solution impregnation method (Fig. 5).

chitosan and silver into MOF-5 using a solution 
of 1 M sodium chloroacetate with 5% sodium 
hydroxide, DMF, and silver nitrate solution [137]. 
Pd@ MOF-5 was also synthesized by solution 
impregnation techniques. This composite was 
prepared by impregnating Pd into MOF-5 using 
palladium acetate or palladium acetylacetonate 
in absolute chloroform [138]. The solution 
impregnation is mostly used for preparing metal@
MOF composite using the salt solution of the metal. 
The metal- MOF composite is prepared as follows 
in Fig. 6.

Click chemistry (reaction) methods
Sharpless and his friends first introduced click 

chemistry in 2001, which grew out of a desire to 
use molecular assembly’s capabilities for as many 
different types of applications as feasible (Fig. 7) 
[140,141]. Click chemistry is defined as a class of 
reactions that are quick, easy to perform, simple 
to refine, flexible, regiospecific, and produce large 
amounts of output [142,143,144]. Using click 
chemistry synthesis method Cu based MOF-
composite was synthesized (Fig. 8) [145]. Zr-based 

Fig. 4. Schematic diagram for the synthetic route MOF-composite materials by solvothermal methods and structure of some MOF-
composites a) Cu-MOF-GO [129] b) Mg/Cu-MOF-74 [130] c) MOF-801 (Zr) [131] d) GO-TMU-16-NH2 [132] e) PCN-624 [133]. 
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MOF (UiO-68-triazole-A) was also synthesized by 
using a click reaction. The azide functional group 
in UiO-66-N3 was modified by phenylacetylene 
using the standard azide-alkyne click reaction. 
Triazole units produced as a result serve as effective 
fluorescence assays for metal ions [146, 147]. 

Characterization of MOF composite materials
The maximum amount of energy that the 

material absorbed (lamda max), electronic 
transition, band gap, functional group, morphology, 
topology, size and shape, stability, and the surface 
charge of the material was analyzed using different 

characterization techniques. The most commonly 
used instrument for characterizing MOF-
composite was ICP, Solution NMR, UV-visible, FT-
IR, XRD, SEM, TEM, Zeta-potential, TGA, EDS, 
N2 adsorption, Cyclic voltammetry, etc. if further 
analysis is needed some other characterizing 
technique like XPS, XANES, EXAFS, SAXS 
spectroscopies can be applied. 

UV-visible analysis of MOF-composites 
From the Fig. 9 (a) below, the maximum wave 

length that PW11V@MIL-101 absorbed with the 
concentration of the composite 5 mg/L was 680 
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Fig. 5. Schematic of the possible methods for preparing polymer@MOF composites [139].
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Fig. 6.Schematic illustration of synthetic strategies of nanoparticle-MOF composite [139].
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nm [148]. (b) Shows the maximum wave length 
absorbed for the composite (1) 1% TiO2/polymer 
composite, (2) 0.5%, (3) 1%, (4) 2% MIL-53(Cr)/
polymer composites was 396, 515, 520, 572 nm 
respectively [149]. (c) The maximum absorption 
wavelengths of Zr-H2BDC, La-H2BDC, La/
Zr-H2BDC, La/Zr-H2BDC, La/Zr-H2BDC, and 
La/Zr-H2BDC were 355, 334, 361, 443, 373, and 
365 nm, respectively. La/Zr-H2BDC has a higher 
maximum wavelength relative to the other in the 
UV-visible region [150]. (d) the UV-visible spectra 
of PABA have a broad absorption band between 

300 and 600 nm which can be attributed to the π-π ⃰ 
transition of the benzenoid rings and quinoid rings, 
respectively, for the polymer and composite [151]. 

SEM analysis of MOF-composites
The morphology of some of the selected MOF-

composite materials is shown in Fig. 10, (a). 
The crystals of the original [Cu3(BTC)2(H2O)3]n 
sample are octahedral with a smooth surface and 
have an average size of 10 mm. (b) The surface 
of the magnetic MOF tends to be rougher after 
immobilization by Fe3O4-Py [152]. (c) MIL-125(Ti) 
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Fig. 7. Schematic diagram representing the principle of click 
reaction [140]

Fig. 8. Synthetic route of Cu@MOF by click chemistry for 
catalytical application  [145]
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Fig. 9. UV-visible spectroscopy for a) PW11V@MIL-101[148], b) 1) 1% TiO2/polymer composite, (2) 0.5%, (3) 1%, (4) 2% MIL-
53(Cr)/polymer composites [149], c) UV-visible spectra of Zr-H2BDC, La-H2BDC, La/Zr-H2BDC, La/Zr-H2BDC, La/Zr-H2BDC, and 
La/Zr-H2BDC [150],  d) UV-visible spectra of PABA [151].
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composite with morphology in between ovoidal 
or flat cubes with round corners (d) MIL-53(Al) 
has flat cube morphology with very small particle 
size [153]. (e) and (f) Cu3(BTC)2.H2O, Fe3O4/
Cu3(BTC)2–H2Dz has crystal losing structure [154]. 

XRD analysis of MOF-composites
The XRD pattern of different MOF-composites 

shown in Fig. 11 was analyzed as,
a) due to a highly ordered structure of Ce-

MOF@TEOS material a sharp peak was shown at 
28.2°. Three other diffraction peaks at 32.3°, 47.8°, 
and 56.6°were displayed, respectively. The pattern 
of Ce-MOF@TEOS and Ce-MOF are the same but 
the intensity of the peak in MOF@TEOS was strong 
indicating that the crystallite structure changed 
due to the presence of TEOS [155].

b) There are no identifiable CsPbBr3 peaks in 
the XRD pattern of the CsPbBr3/MOF-5 composite. 
Because of the weak crystalline structure of 
CsPbBr3 PeQDs than MOF-5 and the small amount 

of PeQDs in the composite, the XRD pattern of 
CsPbBr3 PeQDs was covered by MOF-5. Due to 
this there, the XRD pattern of CsPbBr3/MOF-5 
moves slightly to the small angle direction [156]. 

c) In this the XRD peak of In2O3, MoS2, and 
In2O3/MoS2 composite was clearly seen. The 
characteristic peaks of In2O3 located at 2θ of 
21.42°, 30.63°, 35.46°, 41.79°, 45.76°, 51.05° and 
60.64°, which assigned to the (211), (222), (400), 
(332), (431), (440) and (622) planes of the cubic 
structured In2O3, respective. The peak for MoS2 
occurred at 2θ of 14.31°, 32.98°, 39.59°, and 58.56° 
which were assigned to the s (002), (100), (103), 
and (110) planes respectively. The XRD pattern 
of the composite In2O3/MoS2 was all the peaks in 
In2O3 and MoS2 exist. There is no additional peak 
shown indicating the purity of the material [157]. 
d) In this the peak of all the composite compounds 
(a, b, c) and the MOF (black) was the same. The 
intensity of MOF HKUST1 was strong compared 
to the composite this is due to the doped material 
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Fig. 10. SEM image for MOF-composite of a) [Cu3 (BTC) 2(H2O)3]n [152] ( b) magnetic MOF [152], (c) MIL-125(Ti) [153], d) MIL-
53(Al) [153], (e) Cu3 (BTC)2. H2O [154], ( f) Fe3O4/Cu3 (BTC) 2–H2Dz [154].
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(APTES NW s) in the composite decreasing the 
crystallinity of the material [158].

Thermogravimetric analysis (TGA) of MOF-
composite

From the TGA curve shown in Fig. 12:
a) the two DTG peaks below zero indicate 

the reaction that occurred was exothermic. The 
composite is thermally stable until the temperature 
reaches 300 °C. When the temperature reaches 300 
°C  the composite starts to loss its weight until the 
temperature becomes 440 °C due to the removal 
of water molecules. After that, the composite is 
thermally stable indicating pure Cu-MOF [159]. 
b) This composite loss it’s mass between the 
temperature range between 20-100 °C and 430-580 
°C due to the removal of water and volatile matter. 
The thermal stability indicates the purity of the 

composite [160]. 
c) Almost the material is thermally stable in all 

temperature ranges indicating the material is very 
pure [161]. 

d) All the composites show weight loss but in 
comparison, Zr-MOF-PVA-M was less pure due to 
more conta mination during material doping [162].

Application of MOF-composite
Because of the properties of MOF-composite 

like crystalline porosity, reusability, selectivity, 
perform-ance, and stability, they are highly 
applicable for absorption separation [163]. They 
are mainly used for gas separation [164], oil-water 
separation [165], separation of linear and branched 
hydrocarbon [166], adsorption separation of heavy 
metals in water, dyes [167], and so on. MOF-
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Fig. 11. The XRD pattern of a) Ce-MOF and Ce-MOF@TEOS[155] b) CsPbBr3 PeQDs, CsPbBr0.6I2.4 PeQDs[156] c) In2O3, MoS2 
and In2O3/MoS2 [157]d) MOF HKUST1 (black), MOF HKUST1@ APTES NWs@ Al2O3(compound A, B, C) with different amount of 
dopants( 0.2g: 1.85g, 0.4g: 2.4g, 0.6g: 4.9g of APTES NWs and Al2O3) respectively[158].



28

A. Melese, et al. / Review on Metal-Organic Frameworks (MOFs) Based Composites

J. Water Environ. Nanotechnol., 9(1): 18-43 Winter 2024

composite has a wide application in different fields 
some of which are shown in Fig. 13.

Gas separation application  
MOF-composite can be used for gas separation 

including separating CO2, purifying C2H4, purifying 
C3H8, separating noble gases, and separating 
isotopes. Mainly CO2 is separated from N2, CH4, 
and C2H2. Flue gas formed during combustion can 
cause the greenhouse effect. So highly selective 
MOF-composites like IL/MOF/POLYMER [168], 
cellulose@UiO-68-NH2 [169], ZIF-8/BMIM/SCN 
[170], etc. can be used. CO2 can be separated from 
methane. Methane is the most widely used chemical 
fuel and is the hydrocarbon with the lowest carbon 
content. After combustion, it contains the gas 
CO, CO2, NO, and SO2. Because of this MOF-
composite can be used for separating those gases 
from methane [171]. For the manufacture of 
1,4-butanediol, polymers, and polyurethanes as 
well as for welding and metal cutting, acetylene 
(C2H2) is a necessary precursor. During the 

production of acetylene main gases including CO2 
exist as a byproduct. Removing CO2 is challenging 
because of its kinetic diameter. So MOF-composite 
is the best method to separate C2H2 and CO2 [172]. 
Those materials are also used to purify C2H4 by 
adsorption separation of contaminants from it. 
The primary steps in the purification of C2H4 are 
the separation of C2H2/C2H4, C2H6/C2H4, and C2H2/  
C2H6/CO2/C2H4 [173]. Removing those impurities 
is the primary step in using C2H4 as a raw material in 
different industries, especially for the fabrication of 
polyethylene. Separating C2H6/C2H4 is challenging 
because some physical are similar like their boiling 
point and kinetic diameter. At this time, MOF is 
the best method to purify C2H4 [174]. The other 
gases purified and separated by MOF composite 
including C3H4/C3H6 [175], C3H4/C3H4/C3H6, and 
C3H6/C3H8 [176]. Purified forms of krypton (Kr) 
and xenon (Xe) have found extensive use in a 
variety of industries, including medical imaging, 
industrial lighting [177], insulation, lasers [178], 
illumination, and spaceship propellant [179]. Those 
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Fig. 12. TGA curve for a) Cu-MOF b) pd@MOF c) Zr-MOF, PDA, Zr-MOF-PDA, Zr-MOF-PDA (MOF) d) M, Zr-MOF, Zr-MOF-
PVA/M (M is melamine)
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noble gases are dangerous for the environment 
if they are released into the atmosphere. MOF-
composite is applicable for Xe/Kr separation 
[180]. The materials are also important to separate 
gases with different separations called isotopic 
separation. The property and usage of those gases 
depends on their isotope. For example, isotopes 
of hydrogen have their property and application.  
MOF is important to separate isotopic gases like D2/
H2 mixtures [181]. Separation of linear/branched 
alkane hydrocarbons (C5-C6-C7),  cyclic C6 isomers 
(benzene/cyclohexane), cyclic C8 isomers (styrene/
ethyl benzene, and xylene isomers), Xylene 
isomers’, and Styrene/ethyl benzene separation was 
done by MOF-composite. There is a persistent risk 
of leakages due to the transportation and storage 
of oil and petroleum products as a major source 
of energy around the world [182]. Because of this, 
the water surface is polluted by that oil. To remove 
the oil from the water it is costly. Due to this MOF-
composite is the best method to remove oil from 
the water surface and it is also environmentally 
friendly during separation [183]. 

Wastewater treatment application  
Water is the most vital source of all life activities 

but the growing number of contaminants that 
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Fig. 13. Various applications of MOFcomposite

can pose intensified effects on both humans and 
aquatic life makes water pollution a more serious 
environmental issue [184,185]. Now adays dyes 
are used in a variety of industrial sectors, such as 
tanning leather, paper production, textiles, and 
printing. For instance, azo dyes are widely used 
in the textile industry to generate large volumes 
of colored organic and inorganic wastewater. 
Consequently, their treatment is essential [186,187]. 
In 2021, Shokri reported that the synthetic polymer 
Polyvinyl alcohol (PVA), which is used as a binder, 
shaping agent, and raw material in industries such 
as paper, textile, pharmaceutical, and membrane 
industries, may cause pollution issues if improperly 
handled upon release into the aqueous environment 
[188]. Waste water typically contains not only 
dyes it also contains heavy metals, which makes it 
difficult to remove both at once. Therefore, before 
wastewater is released into the environment, it is 
ideal if the materials employed for treatment can 
remove both dyes and heavy metals[189].

So, in an attempt to address this environmental 
issue, many researchers have focused their efforts 
on enhancing current technologies or offering 
a substitute plan. Therefore their superior large 
surface area, high porosity, and customizable 
properties of their structures and functions 
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make metal-organic frameworks (MOFs) one of 
the appealing materials for this purpose [190].
For example Shi et al. synthesized Cu-MOFs/
Fe3O4 as adsorbent for removal of lead (Pb(II)) 
and malachite green (MG) in wastewater. 
The synthesized Cu-MOFs/Fe3O4 composite 
was found to be the potential adsorbent for 
waste water treatment [191]. In the same 
year, Ramezanalizadeh et al. also reported the 
Immobilization of BaWO4 nanostructures on 
a MOF-199-NH2 an efficient photocatalyst for 
the degradation of methyl orange (MO) and 
4-Nitrophenol (4-NP) water contaminants 
and Fig. 14 depicted the mechanism of methyl 
orange and 4-nitrophenol degradation using the 
synthesezed composite. It’s noteworthy to observe 
that the absorption maximum of the composites 
with worse optical properties than the pure MOF 
has redshifted as a result of the immobilization 
of BaWO4 into the MOF-199-NH2. Furthermore, 
the MOF-199-NH2 has a bandgap of 3.2 eV, but 
the composite’s predicted bandgap is lower at 
3.0 eV (Fig. 14). Thus, for methyl orange and 
4-nitrophenol, the MOF-199-NH2/BaWO4 
compound allowed for full degradation in 50 and 
80 minutes, respectively [192].

Sensing application 
Different chemo-sensory materials are 

developed for sensing application but MOF- 
the composite sensor solves the drawback that 
is not solved by chemo-sensory materials due 

to the properties of MOF-composite [193]. 
The property of MOF-composite includes a 
high porosity, a wide surface area, structural 
variety, flexibility, an exceptional capacity for 
adsorption, and chemical tenability [194]. The 
world’s population increases from time to time 
because of environmental pollution and related 
health risks increase. Due to this materials for 
sensing application can be developed [195]. The 
development of effective analytical methods for 
the detection of biomolecules in clinical [196], 
environmental [197], and industrial applications 
[198] has a great potential for MOF-based sensors. 
MOF-composite is used to sense biological 
macromolecules like proteins and nucleic acids 
(DNA and RNA) [199] and small molecules 
including amino acids [200], Lipids [201], fatty 
acids [202], glycolipids, sterols, monosaccharides 
[203], phenolic compounds, and alkaloids [204]. 
To detect chemicals in different fields chemical 
sensors and photochemical sensors can be 
applied.  Different gases were detected by MOF-
composite sensor including acetone, CO2, CS2, 
n-propanol, isopropyl alcohol, H2, pyridine, 
n-hexane, toluene, SO2, methanol, H2O2, ethanol, 
formaldehyde, etc [205, 206]. The application of 
MOFs in a variety of sensing applications, including 
the pH sensor, the detection of pesticide residues, 
the clinical diagnosis of diabetes, and photothermal 
therapy, shows significant promise [207].  For food 
safety, MOFs detail every use of MOFs in food 
safety monitoring, including sample preparation, 
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Fig. 14. suggested mechanism for the photocatalytic degradation of organic dyes (methyl orange and 4-nitrophenol) synthesized 
composite photocatalyst (MOF-199-NH2/BaWO4) under incident light irradiation.Reprinted from reference [192] Copyright (2023) 
with permission from Elsevier.

https://www.sciencedirect.com/topics/chemistry/malachite-green
https://www.sciencedirect.com/topics/chemistry/wastewater
https://www.mdpi.com/2073-4360/12/11/2648#fig_body_display_polymers-12-02648-f004
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separation, packaging, preservation, detection, 
and cleaning [208]. The MOF-composite and its 
adsorption separating materials and materials that 
can be detected by those sensors are listed briefly 
in Table 1.

CONCLUSION
The numerous research articles that have 

been published over the last two decades show 
how interesting MOFs are to both scientists and 
engineers. The interest in MOF-composites is 
due to their property including wide surface area, 
adjustable composition, highly flexible structures, 
and variable porosity. MOF-composite was made 
by metal ion/cluster with organic ligands with the 

introduction of dopants like metal, metal oxide, 
carbon-based materials, enzymes, etc on its surface. 
The most common synthesizing techniques used 
to produce MOF-composite were encapsulation, 
Solvothermal, Solution impregnation, Click 
chemistry (reaction), and so on.  Some examples 
of MOF-composite synthesizing by those 
techniques like MOF-199/N, Co-TCPP(Fe), 
NH2-MIL-101(Al), DNA@ZIF-8, CA/ZIF-8@
LAC/ MWCNTs/Au, etc. They are applicable for 
adsorption separation and as a sensor. MOF-
composite is used to separate different gases like 
CO2/N2, CO2/CH4, C2H2/CO2, C2H2/C2H4, C2H6/
C2H4, C2H2/C2H6/CO2/C2H4, C3H4/C3H6, C3H6/
C3H8, noble gas separation and isotopic separation. 
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MOF-composite material widely applicable for 
separation of oil/water mixture, Separation of 
linear/branched alkane hydrocarbons (C5-C6-C7), 
cyclic C6 isomers (benzene/cyclohexane), cyclic 
C8 isomers (styrene/ethyl benzene, and xylene 
isomers), Xylene isomers’, and Styrene/ethyl 
benzene separation was done by MOF-composite. 
They are also used as sensors for sensing different 
toxic chemicals, drugs, gases, trace metals, contents 
in foods, etc. dichlorophen, hydroquinone, 
catechol, Drug Idarubicin, tetracycline, Ammonia, 
H2S, H2O2, Al3+, glucose, etc. Generally, MOF 
composites are interesting materials with a wide 
area of application in many fields. 
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