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ABSTRACT
This work attempted to determine the optimum conditions required for the coagulation and 
flocculation process as an essential stage of the ceramic wastewater treatment. Coagulation 
and flocculation is a very necessary step in industries as it lessens turbidity, color, and odor of 
wastewater. The experimental work was performed in several runs. The volume of wastewater 
used in each run was 200 mL and was kept at this value throughout. In certain runs, the speed 
of the mixer was varied while keeping the quantity of coagulant and flocculant constant in 
order to determine the optimum speed that resulted in the least turbidity. A speed of 5% 
was chosen as the ideal process speed according to the results obtained. Next, experiments 
were operated at this optimum speed while changing the dosage of coagulant and flocculant 
in order to decide the optimum dosage. Coagulant and flocculent amounts of 0.4 g (without 
booster) and 0.2 g (with booster) selected after the readings were taken. For all the readings, 
a turbidity meter was used providing results in Nephelometric Turbidity Units (NTU). Lowest 
turbidity was achieved when using 5% speed with 0.4 grams of coagulant and 0.4 grams of 
flocculant, or 5% speed with 0.2 grams of coagulant, 0.2 grams of flocculant and 0.25 g/L of 
booster coagulant. According to factorial design analysis, such as parameters as impeller speed 
and dosage have an influential impact on the turbidity; while the booster has insignificant 
influence and other interactions between parameters are important. 
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INTRODUCTION
Wastewater polluted with various contaminants 

from domestic, industrial, commercial and 
institutional sources needs to undergo efficient 
treatment. It is highly important to treat the 
wastewater before it is discharged or re-used to 
protect the environment and health of people. 
Treated wastewater can be safely disposed to water 
bodies located nearby such as rivers and lakes or 
can be re-used for irrigation purposes.

Coagulation and flocculation is a coupled 
process used widely in numerous industries as a 
vital part of the overall treatment of wastewater. 
The principal aim of coagulation and flocculation 
is to decrease turbidity of wastewater. Turbidity 
refers to the cloudiness of water mainly due to the 
presence of suspended particles, namely colloids. 
It has been reported that removal of such colloidal 
particles from the wastewater is necessary and 
is a challenging issue for the industries [1, 2]. 
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Coagulation/flocculation is a straightforward and 
effective technique for wastewater treatment and 
has been broadly utilized for the treatment of 
different sorts of wastewater, for example, palm 
oil plant profluent, material wastewater, mash 
factory wastewater, sleek wastewater, clean landfill 
leachates and others [3– 7]. In this procedure, after 
introducing coagulant and/or flocculant, finely 
partitioned or scattered particles are amassed or 
agglomerated together to frame huge particles 
of such a size (flocs) which settle and cause 
illumination of the framework [8].

Inorganic salts of multivalent metals, for 
example, alum, poly aluminium chloride, ferric 
chloride, ferrous sulfate, calcium chloride and 
magnesium chloride have been broadly utilized 
for a considerable length of time as coagulant [9]. 
It is fundamentally as a result of its preference of 
minimal effort, where their business sector cost 
is particularly lower contrasted with the chemical 
flocculants. In any case, the utilization of inorganic 
coagulants in wastewater is entirely restricted these 
days and has been lessened because of various 
weaknesses. It has been accounted for that its 
utilization would bring about two vital ecological 
results which are the generation of vast volumes of 
the metal hydroxide (poisonous) emission which 
will make transfer issue and an increase in metal 
(e.g. aluminum) concentration in the treated water 
which may have human health implication [10]. 

Lately, numerous manufactured polymers have 
been utilized as the principle flocculants which 
could improve the performance of coagulation/
flocculation process with promising results [11, 
12]. Commercial organic flocculants are generally 
water dissolvable polymers made out of acrylamide 
and acrylic acid. As a rule, they are obtained from 
oil-based and non-renewable crude materials 
[13]. Regularly utilized polymeric flocculants 
incorporate polyacrylamide, polyacrylic corrosive, 
poly(diallyl dimethyl ammonium chloride) 
(DADMAC), polyamine and others [14]. The 
utilization of organic polyelectrolytes in drinking 
water treatment was studied focusing on the 
sorts of polymers ordinarily accessible and the 
way of the contaminations to be removed [15]. 
Subsequently, the role of polymeric flocculants in 
wastewater treatment is well understood, where 
it has effectively treated colloidal particles and 
contaminants (toxins) from different sorts of 
wastewater. Worth mentioning, the efficiency of 
the coagulation and flocculation process, which 

affects the overall efficiency of the treatment 
process, depends on various factors. These include 
the quantity (dosage) and type of coagulant and 
flocculant used, retention time, the speed of the 
mixer and the temperature at which the process 
occurs. Optimum conditions are extremely 
necessary to achieve high efficiency and fine 
results.

This study was carried out using wastewater 
collected from a ceramic factory (Industrial city, 
at Ras Al-Khaimah, UAE). The absence of the 
water assets, the impact of wastewater release from 
this plant on the ground water, annihilation for 
creatures around the territory and the advantage 
of reuse the mass clay in ceramic fabricating 
bodies and land filling, UAE government provided 
strict enactment concerning the amount of the 
water utilized as a part of the manufacturing plant 
require treatment of such wastewater.

In this work, the polyacrylamide polymer 
(CH2CHCONH2) was used as a coagulant, 
polychromide was used as a flocculant because of 
its high molecular weight and negative charges, 
while poly-aluminum chloride (PAC) was used 
as booster coagulant. The coagulant/flocculant 
system was tested for their ability to treat Ras 
Alkhaima ceramic wastewater. The treatment 
was assessed via turbidity of the treated water. 
The objective of this work is to determine the 
effect of such parameter as coagulant/flocculant 
dosage, mixing speed, and coagulant booster on 
the turbidity of the treated water. Factorial design 
analysis will also be used in order to achieve this 
goal quantitatively. 

EXPERIMENTAL 
Materials

The wastewater of Ras Al-Khaimah ceramic 
factory was characterized by high TSS (mg/l), 
biochemical oxygen demand (BOD in mg/l), 
COD (mg/l), and total organic carbon (TOC 
in mg/l) (Table 1). Polyacrylamide polymer 
(CH2CHCONH2) was used as a coagulant, 
polychromide was used as a flocculant because of 
its high molecular weight and negative charges, 
while poly-aluminum chloride (PAC) was used as 
booster coagulant. All chemicals are of analytical 
grades (Alrich, USA)

Apparatus
Armfield Flocculation Test unit (Armfield, 

UK) assists in performing ‘jar tests’ on wastewater 
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sample that require treatment by flocculation 
process on a laboratory scale (Fig. 1). It is used to 
determine the optimum coagulant and flocculants 
dosage for enhanced removal of solids. It can also 
be used to study the effect of the mixing time and 
the intensity of aggregation. Moreover, a light is 
integrated under the base of the test beakers to 
assist in the observation of suspended flocs and 
solids by the naked eye. Four stirrers are available 
to test 4 samples at the same time. Dimensions of 
paddle blade are 50 mm × 15 mm; stirrer speed 
is in the range 0 – 200 rpm; and the maximum 
sample volume is 1 Liter.

LP 2000 turbidity meter by Hanna Instruments 
(Germany) was used to determine the turbidity of 
the suspensions. This meter cover covers the 0 to 
1000 Formazine Turbidity Unit (FTU) range with 
0.01 resolution from 0.00 to 50.00 FTU and single 
digits from 50 to 1000 FTU. The FTU is equivalent 
to the Nephelometric Turbidity Unit (NTU). 

Procedure
Wastewater samples were obtained and 5 runs 

were carried out to determine optimum speed, 
the optimum mass of coagulant and flocculant 
and the effect of the coagulant booster. In order to 
optimum flocculation speed, each test was started 
by adding 200 ml of water sample following by 
addition of 3 g of coagulant. The speeds of the 
four mixers (shown in Fig. 1) were set at 5%, 10%, 
20%, and 40% and mixing were allowed for 5 

minutes. The mixing time of 5 minutes was found 
experimentally as the best period for the mixing 
process. After 5 minutes, 3 g of flocculant was 
added to each beaker. After another 5 minutes, the 
mixers were switched off and quickly transferring 
the content 4 different cylinders (Fig. 1). After 
24 hours, the turbidity was measured using the 
turbidity meter and the volume of water collected 
was also measured. 

To investigate the effect of coagulant and 
flocculant dosages, the above-mentioned 
procedure was repeated using the optimum mixer 
speed but tests were repeated using 0, 0.1, 0.2, 0.3, 
0.4, 0.5, 1, 2, and 3 g of coagulant and flocculant.  
The effect of coagulant booster was studied by the 
addition of 0.25 g/l of coagulant booster to each 
system after addition of the coagulant. 

The pH was fixed during the course of 
experimentation at the initial value of about 7.5 – 
8.0. All tests were carried out at room temperature.

Two-Level Experimental Factorial Design
A factorial design is a procedure used to 

screen variables, to assess the main impacts and 
interaction impacts of various parameters, and to 
create an empirical model for a given system. It 
is utilized in view of its capacity to pick up a lot 
of data from a minimum number of data points. 
[16]. Selection of two level, high level (+1) and low 
level (-1), operating variables and construction of 
factorial tests are explained elsewhere [17].

 

 
Figure 1. Armfield Flocculation Test Unit 

  
Fig. 1. Armfield Flocculation Test Unit
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RESULTS AND DISCUSSION
Speed of Mixing

After performing the coagulation/flocculation 
process at different mixer speeds, the results were 
recorded and analyzed. The results are shown 
in Fig. 2. Some samples showed no separation 
between suspension and water and turned out to 
be all suspensions, which was due to adding a high 
amount of coagulant and flocculant. However, the 

rest of the samples showed a trend in the relation 
between the speed of mixing and the turbidity 
as shown in Fig. 2. At a lower mixing speed, the 
water would have a lower turbidity. The mixing 
speed is an important factor in the coagulation 
and flocculation process and must be given great 
attention, because if the speed exceeds a certain 
limit, the mixer’s impellers will begin to tear apart 
the flocs forming in the water and therefore the 

 

 
Figure 2: Effect of mixing on turbidity. Sample volume of each sample: 200 ml; the amount of coagulant added: 3g; the amount of flocculant 

added: 3g. 
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Fig. 2. Effect of mixing on turbidity. Sample volume of each sample: 200 ml; the amount of coagulant 

added: 3g; the amount of flocculant added: 3g.
 

 

 
Figure 3: Plot of turbidity (NTU) vs. mass of coagulant/flocculant (g). Sample volume: 200ml; 

Speed: 5%. 
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Fig. 3. Plot of turbidity (NTU) vs. mass of coagulant/flocculant (g). Sample volume: 200ml; Speed: 5%.
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particles become smaller and harder to settle, 
which results in an increase in the turbidity of the 
water. According to Fig. 2, it is noted that within 
the experimental range being tested, the best speed 
to work with for the coagulation and flocculation of 
this water sample is 5%.

Mass of Coagulant/Flocculant
Another important factor in the optimization of 

the coagulation-flocculation process is the amount 
of chemicals added to the system. After testing 
the turbidity of the water at different amounts of 
chemicals, the results showed that the optimum 
mass for the coagulant and flocculant is 0.4 grams 
of each. As seen in Fig. 3, the turbidity of the water 
drops drastically when adding a small amount of 
chemicals (0.1 grams) and keeps dropping by small 
increments until it reaches the lowest turbidity 
(5.64 NTU) at 0.4 grams of chemicals. After that, 
as the amount of chemicals increases, the turbidity 
of the water starts increasing with the amount of 
chemicals. Therefore, the optimum amount of 
chemicals to be added was found to be 0.4 grams.

Effect of Booster Coagulant
The booster coagulant, which is poly-aluminum 

chloride in this work, was added to enhance the 
coagulation process by increasing the amount of 
positive charge and therefore creating particles that 
are larger, heavier and settle easily. The booster was 

added in an equal amount of 0.25 g/l to the water 
to test for the difference in the turbidity with and 
without the booster. Fig. 4 shows the turbidity of 
water at given amounts of coagulant and flocculant 
with and without the addition of the booster. It 
can be seen that the booster worked well with the 
samples carrying the lowest amounts of chemicals 
and decreased the turbidity by 8% in the case of the 
first dose of coagulant (i.e. 0.1 g) and approximately 
24% in the case of the second dose of coagulant 
(i.e. 0.2 g). It also changed the optimum amount 
of chemicals from 0.4 grams to 0.2 grams, which 
is half of the dosage. However, for samples with 
a larger amount of chemicals, the booster gave a 
higher turbidity than the original test (without 
the booster), which is a result of the coagulant 
and booster getting attached and not allowing the 
particles to settle perfectly.

23 Factorial Model   
The interaction among previously studied 

parameters on the water turbidity can be explored 
via two-level factorial design. For the factorial 
design analysis, the working variables speed, 
coagulant/ flocculant dosage and coagulant booster 
(with or without) were designated as X1, X2, and 
X3, respectively; while the turbidity, as a response 
variable, was designated as Y. Construction of the 
23 complete factorial design is shown in Table 1 
with measured values of the response variable, i.e. 

Table 1.Industrial wastewater characteristics
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turbidity. Details for the construction of this table, 
calculation of factorial model parameters as well 
main effects and interaction effects are explained 
elsewhere [17, 18]. 

Calculations based on the above-mentioned 
values (Table 1) results in the following 23 complete 
factorial model:
 

32104.133245.33196.162198.1053055.0218.154102.10332.163 XXXXXXXXXXXXY +++++++=
∧

 
32104.133245.33196.162198.1053055.0218.154102.10332.163 XXXXXXXXXXXXY +++++++=

∧

 
32104.133245.33196.162198.1053055.0218.154102.10332.163 XXXXXXXXXXXXY +++++++=

∧
                                                                                    (1)

Clearly, interactions exist among the operating 
variables and that the parameters don’t work 

autonomously on the response variable. 
An outline of the calculation method for the 

main impact of every term in Eq. (1) is appeared in 
Table 2. Therefore, based on the values of Table 2, 
the effect of increasing the speed from 5% to 40% 
overall levels of dosage and whether with booster 
and without a poster is to increase the turbidity to 
824.2 NTU. Also, the increase in the dosage from 
0.5 to 3 g increases the turbidity to 1233 NTU, 
while booster has an insignificant effect on the 
turbidity. It can be concluded that the influence of 
dosage on the turbidity is more pronounced than 
that of impeller speed. 

The impact of interaction (dummy) parameters 
can be comparatively computed. These parameters 

Table 2. Two-level factorial design for coagulation/flocculation of  Ras Alkhaima wastewater

* Values in duplicate

 
Figure 4: Comparison of final turbidity with and without a booster. Sample volume: 200ml; 

Speed: 5%; Booster concentration: 0.25 g/l. 

 

0

2

4

6

8

10

12

0.1 0.2 0.3 0.4

T
u

rb
id

it
y 

(N
T

U
)

Mass of Coagulant/Flocculant (g)

Without Booster

With Booster
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measure any conceivable interaction in the 
framework. It is seen that the values of these 
impacts (Table 2) are important in contrast with the 
impact of the main operating variables, hence their 
impact on the response variable (turbidity) cannot 
be disregarded.    

Assessment of Significance of Main Effects
The impact of every term in Eq. (1) on the 

response can be examined by giving a confidence 
interval for every parameter. As needs be, if the 
certainty interim for a given parameter contains 
the point zero, it implies that the term connected 
with such parameter is not essential and can be 
barred from the model. The confidence interval for 
the least squares estimates is given by [18]:
 2/1

, 














±
∧∧

ii Vt ββ αν

      

                                                                                  
   (2)

where tν,α is student’s statistics, ν is the degrees of 
freedom associated with the pure variance, σ2, and 
α is the probability limit. As estimate of pooled 
variance, based on duplicates shown in Table 1, of 
5.87 with corresponding tν,α of 1.95 at 95% 

confidence level was calculated. Since 
 

)(
∧
βV  of 

each of the parameter estimate in Eq. (1) 
is σ2/23, then the 95% confidence internal for each 
parameter, according to Eq. (5) is

 
67.1±

∧
iβ . 

Consequently, it is just the 95% confidence interval 
for the parameter connected with the main variable 





 

X3 (Booster) goes through the origin. Subsequently, 
at 95% this parameter is inconsequential and has 
not an essential impact on the response variable Y. 
Nonetheless, the impact of other main variables, 
speed and dosage, and also all interaction terms, on 
the response variable (i.e. turbidity) can’t be 
dismissed over the range of operating conditions 
tried in this work. Along these lines, at 95% 
certainty level, Eq. (1) can be rearranged as:
 

32104.133245.33196.162198.105218.154102.10332.163 XXXXXXXXXXXY ++++++=
∧

      
 

32104.133245.33196.162198.105218.154102.10332.163 XXXXXXXXXXXY ++++++=
∧

 
32104.133245.33196.162198.105218.154102.10332.163 XXXXXXXXXXXY ++++++=

∧
                                                                                    (3)

CONCLUSION
The factorial design is a valuable technique in 

deciding the operating variables that essentially 
impact the turbidity of ceramic wastewater. It 
decreases the mystery that would have gone into 
figuring out which factors really influenced the 
turbidity. At 95% confidence level, the factorial 
design showed that, as main variables, the impeller 
speed and dosage have a significant effect on the 
turbidity, while the booster is not a significant 
variable. Likewise all conceivable interactions 
between the three variables are immaterial and do 
influence the value of the turbidity within the scope 
of the operating conditions tried in this work.
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